Читаем Всего шесть чисел. Главные силы, формирующие Вселенную полностью

Поэтому для любой вселенной с большим набором химических веществ необходимо, чтобы число ε находилось в диапазоне от 0,006 до 0,008. Некоторые отдельные детали еще более чувствительны к его значению. Английского физика-теоретика Фреда Хойла мысль о самом популярном примере «точной настройки» осенила, когда он точно рассчитывал процесс синтеза углерода и кислорода в звездах. Углерод (с шестью протонами и шестью нейтронами в атомном ядре) получается из сочетания трех ядер атомов гелия. Шанс на то, что все три соединятся одновременно, очень мал, и поэтому процесс идет через промежуточную стадию, на которой два ядра гелия соединяются в бериллий (четыре протона и четыре нейтрона), прежде чем соединиться с еще одним атомом гелия, чтобы получился углерод. Хойл столкнулся с проблемой нестабильности этого атома бериллия: он распадается так быстро, что, кажется, у третьего атома гелия очень мало шансов прилепиться к нему до распада. Так как же углерод вообще мог возникнуть? Выяснилось, что у ядер углерода есть характерная черта – присутствие резонанса с особым видом энергии, которая повышает шанс на то, что бериллий захватит еще одно ядро гелия в короткий интервал до своего распада. Хойл фактически предсказал существование этого резонанса и призвал коллег-экспериментаторов его измерить. Его предсказание было доказано. Этот процесс, казавшийся физикам-ядерщикам случайным, позволяет образовываться углероду, но подобного явления не возникает на следующей стадии, когда углерод захватывает еще один атом гелия и превращается в кислород. Этот жизненно важный резонанс очень чувствителен к ядерной силе. Сдвиг ее даже на 4 % сильно уменьшил бы количество углерода, которое могло бы образоваться. Таким образом, Хойл доказал, что наше существование могло быть поставлено под угрозу изменением числа ε всего на несколько процентов{6}.

Независимо от того, как создаются элементы, изменения в значении числа ε отразились бы на длине периодической таблицы. Более слабая атомная сила переместила бы наиболее прочно связанные атомы (которым сейчас является железо, № 26) ниже в периодической таблице и понизило бы количество стабильных элементов до уровня куда меньшего, чем 92. Это привело бы к «обедневшей» химии. Наоборот, увеличение значения числа ε могло бы повысить стабильность тяжелых атомов.

На первый взгляд, более длинный список различных распространенных атомов открывает путь к более интересной и разнообразной химии. Но это вовсе не само собой разумеется – например, английский язык не стал бы значительно богаче, если бы в алфавите было больше букв. Аналогично и сложные молекулы могут существовать в бесконечном разнообразии, хотя и состоят из относительно небольшого набора общих элементов. Химия была бы скучнее (а сложные молекулы, необходимые для жизни, в ней вовсе бы не существовали), если бы в изобилии не было кислорода и железа (№ 8 и № 26 соответственно), а особенно – углерода (№ 6). При этом мало что изменится от увеличения количества часто встречающихся элементов или от наличия нескольких дополнительных стабильных элементов, помимо привычных нам 92.

Существующее ныне сочетание элементов зависит от значения числа ε, но куда более значимо то, что никакая основанная на углероде биосфера не может существовать, если оно будет равно 0,006 или 0,008, а не 0,007.

ГЛАВА 5

НАША КОСМИЧЕСКАЯ СРЕДА ОБИТАНИЯ II: ЗА ПРЕДЕЛАМИ НАШЕЙ ГАЛАКТИКИ

Телескоп (сущ.): Устройство, относящееся к глазу так же, как телефон к уху, и позволяющее удаленным объектам донимать нас обилием бесполезных деталей.

Амброз Бирс[18]

ВСЕЛЕННАЯ ГАЛАКТИК

Я уже рассказал, как были созданы атомы периодической таблицы и что мы – это звездная пыль или, если быть менее романтичным, «ядерный мусор», оставшийся от топлива, позволяющего звездам сиять. Эти процессы зависят от значения атомной силы, которая «склеивает» протоны и нейтроны внутри атомного ядра и измеряется космическим числом ε = 0,007, которое обозначает, в каком соотношении высвобождается энергия во время термоядерной реакции преобразования водорода в гелий. Но откуда появились самые первые протоны и атомы водорода и как из изначальной материи образовались первые галактики и звезды? Чтобы ответить на эти вопросы, нам нужно расширить наши границы в пространстве и во времени – в межгалактическую область и назад в ту эпоху, когда еще не было первых звезд. Мы должны познакомиться с другими числами, которые описывают нашу Вселенную, и удостовериться, что наше появление зависит от их точного значения.

Перейти на страницу:

Похожие книги

Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду
Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду

Дэвид Роберт Граймс – ирландский физик, получивший образование в Дублине и Оксфорде. Его профессиональная деятельность в основном связана с медицинской физикой, в частности – с исследованиями рака. Однако известность Граймсу принесла его борьба с лженаукой: в своих полемических статьях на страницах The Irish Times, The Guardian и других изданий он разоблачает шарлатанов, которые пользуются беспомощностью больных людей, чтобы, суля выздоровление, выкачивать из них деньги. В "Неразумной обезьяне" автор собрал воедино свои многочисленные аргументированные возражения, которые могут пригодиться в спорах с адептами гомеопатии, сторонниками теории "плоской Земли", теми, кто верит, что микроволновки и мобильники убивают мозг, и прочими сторонниками всемирных заговоров.В формате PDF A4 сохранен издательский макет книги.

Дэвид Роберт Граймс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Эволюция человека. Книга III. Кости, гены и культура
Эволюция человека. Книга III. Кости, гены и культура

В третьем томе знаменитой "Эволюции человека" рассказывается о новых открытиях, сделанных археологами, палеоантропологами, этологами и генетиками за последние десять лет, а также о новых теориях, благодаря которым наше понимание собственного происхождения становится полнее и глубже. В свете новых данных на некоторые прежние выводы можно взглянуть под другим углом, а порой и предложить новые интерпретации. Так, для объяснения удивительно быстрого увеличения объема мозга в эволюции рода Homo была предложена новая многообещающая идея – теория "культурного драйва", или сопряженной эволюции мозга, социального обучения и культуры.

Александр Владимирович Марков , Елена Борисовна Наймарк

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
История целибата
История целибата

Флоренс Найтингейл не вышла замуж. Леонардо да Винчи не женился. Монахи дают обет безбрачия. Заключенные вынуждены соблюдать целибат. История повествует о многих из тех, кто давал обет целомудрия, а в современном обществе интерес к воздержанию от половой жизни возрождается. Но что заставляло – и продолжает заставлять – этих людей отказываться от сексуальных отношений, того аспекта нашего бытия, который влечет, чарует, тревожит и восхищает большинство остальных? В этой эпатажной и яркой монографии о целибате – как в исторической ретроспективе, так и в современном мире – Элизабет Эбботт убедительно опровергает широко бытующий взгляд на целибат как на распространенное преимущественно в среде духовенства явление, имеющее слабое отношение к тем, кто живет в миру. Она пишет, что целибат – это неподвластное времени и повсеместно распространенное явление, красной нитью пронизывающее историю, культуру и религию. Выбранная в силу самых разных причин по собственному желанию или по принуждению практика целибата полна впечатляющих и удивительных озарений и откровений, связанных с сексуальными желаниями и побуждениями.Элизабет Эбботт – писательница, историк, старший научный сотрудник Тринити-колледжа, Университета Торонто, защитила докторскую диссертацию в университете МакГилл в Монреале по истории XIX века, автор несколько книг, в том числе «История куртизанок», «История целибата», «История брака» и другие. Ее книги переведены на шестнадцать языков мира.

Элизабет Эбботт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Педагогика / Образование и наука