Электромагнитные волны могут быть всевозможной длины. Самые короткие волны мы называем гамма-излучением
. Немного больше длина волны у рентгеновского излучения, еще больше — у ультрафиолетового. Длиннее волны у так называемого видимого излучения: его может регистрировать человеческий глаз как свечение разного цвета, от фиолетового до красного. Длина волны у инфракрасного излучения больше, чем у красного. Наш глаз уже не воспринимает такие волны, но зато мы их чувствуем кожей как тепло. Еще большей длиной волны обладает так называемое миллиметровое излучение, а дальше начинается диапазон длинных радиоволн. Все это — типы электромагнитного излучения. Чем меньше длина волны, тем большую энергию несет излучение. Наиболее энергичны гамма- и рентгеновское излучения, поэтому они могут проникать даже сквозь твердые тела.Схема диапазонов электромагнитных волн от гамма- до радиоволн.
Итак, оказалось, что вся Вселенная наполнена
Пространство наполнено не только электромагнитными волнами, но и гравитационными полями
, которые создают все тела во Вселенной. Гравитационное поле довольно слабое, и поэтому нужны гигантские массы, чтобы почувствовать создаваемую этим полем силу притяжения. Мы чувствуем силу притяжения Земли, поскольку у нас под ногами (совсем близко!) громадная масса (число килограммов выражается единицей с 24 нулями). Эта масса обладает огромным тяготением — благодаря этому мы давим своим весом на пол и не можем летать по комнате. А огромная масса Солнца (единица и еще тридцать нулей, если выражать ее в килограммах) заставляет летящую со скоростью 30 км/с Землю бесконечно кружить вокруг нашего светила, не отпуская ее в межзвездный полет.По-видимому, теория Максвелла, в которой скорость света оказалась фундаментальной величиной, произвела сильное впечатление на немецкого физика Альберта Эйнштейна
(1879–1955)[27].В 1905 году Эйнштейн, еще, в сущности, совсем молодой человек, опубликовал свою статью, где изложил основы так называемой специальной теории относительности.
Его теория строилась на двух важнейших постулатах:
1. Движение является относительным. Для всех наблюдателей, которые движутся равномерно (то есть не меняя скорость и никуда не поворачивая), все проявления физических законов выглядят одинаково. Наблюдатели могут двигаться очень быстро или очень медленно (лишь бы равномерно!) — для них эффекты физических законов будут проявляться одинаково.
2. Скорость света в пустоте постоянна. Если наблюдатель движется равномерно (неважно, быстро или медленно), скорость света для него не меняется и всегда равна
Что такое постулаты? Это то же самое, что аксиомы — положения, которые мы принимаем без доказательств.
На каком основании они приняты? Строго говоря, это предположения Эйнштейна, которые он выдвинул, конечно же, не просто так. Любые претензии к постулатам в науке снимаются одинаково: надо проверить их следствия. Если предсказания, основанные на теории, не сбываются — не подтверждаются результатами опытов либо наблюдениями, значит, тем хуже для теории, она не верна. Если же предсказания сбываются на практике, особенно те предсказания, которые следуют именно из этой теории, но не следуют из других, значит, теория правильна!
Забегая вперед, укажем, что все предсказания теории подтвердились и продолжают подтверждаться, несмотря на то что и сами постулаты, и следствия теории выглядят иногда противоречащими здравому смыслу.
Например, второй постулат — о постоянстве скорости света в любой равномерно движущейся системе координат — кажется абсурдным. Если некий наблюдатель едет на машине и стреляет вперед из пистолета — с какой скоростью пуля вонзится в мишень? Любой школьник скажет, что к скорости пули нужно прибавить скорость машины[28]
.В рамках этой же логики, если мы будем лететь на звездолете и направлять вперед лазерный луч, может показаться, что скорость распространения луча будет больше скорости света — к этой величине нужно было бы добавить скорость звездолета. Но согласно второму постулату теории относительности это неправильно. Скорость света в пустоте
Как это может быть? Если вспомнить, что скорость — это величина пути, пройденного за единицу времени, получается, что для разных наблюдателей по-разному должны восприниматься либо путь, либо время, либо и то и другое.