Читаем Вселенная. Путешествие во времени и пространстве полностью

Надо упомянуть еще одну важную деталь картины мира Эйнштейна образца 1917 года. Вселенная Эйнштейна не бесконечна: она имеет конечный объем. Но означает ли это, что наблюдатель на звездолете, двигаясь по прямой, однажды должен упереться в стенку (например, кирпичную) с красивой надписью «конец Вселенной»? Этого не произошло бы. По представлениям Эйнштейна, пространство нашей Вселенной искрив­лено и замкнуто само на себя. Звездолет, летя вперед и вперед, ­однажды должен попасть в ту же точку, откуда он вылетел, только с обратной стороны. Из-за кривизны пространства геодезическая линия, которая кажется нам прямой, немного искривляется и в конечном итоге замыкается. Ситуация аналогична кругосветному путешествию по поверхности Земли: мы движемся вперед и вперед по поверхности, которая кажется нам плоской, и попадаем в ту же точку, откуда начали свой путь. Замечательно, что в обоих случаях нет никакого «края света».

Это тоже был новый элемент картины мира. По Эйнштейну, Вселенная только кажется бесконечной: она, безусловно, огромна, но ее объем конечен (а значит, велико, но не бесконечно количество галактик). Аналогично конечна поверхность Земли — никакой границы у нее нет, но есть вполне определенная площадь, которую можно выразить, например, в квадратных километрах. Точно так же в принципе можно выразить и общий объем Вселенной (например, в кубических километрах) в рамках такой модели. Правда, данных для этого нет: кривизну пространства Вселенной до сих пор не удалось установить. Если она (кривизна) и существует, то очень мала (иначе мы бы ее уже определили). А это значит, что Вселенная либо имеет громадный объем, либо (при нулевой кривизне) все-таки бесконечна.

Новая теория, описывающая мир, по-видимому, произвела сильное впечатление на российского математика и геофизика, которого звали Александр Александрович Фридман (1888–1925).

Фридман — представитель петербургской математической школы, которую некогда основал знаменитый математик Леонард Эйлер. Учителем Фридмана был замечательный русский ученый Владимир Алек­сеевич Стеклов, имя которого носит нынешний ­Математический институт Российской академии наук (РАН).

Фридман проанализировал теорию относительности и показал (привел математические доказательства), что уравнения Эйнштейна на самом деле описывают не только частный случай статической (не изменяющейся) Вселенной, но и крайне интересные случаи динамичной Вселенной. Из уравнений следует, что Вселенная может расширяться и сжиматься как единое целое!

Научная статья Фридмана называлась «О кривизне пространства». Он написал ее в голодном послереволюционном Петрограде в мае 1922 года и отправил в авторитетное немецкое научное издание «Физический журнал» (Zeitschrift für Physik), где статья была опубликована в том же году.

Уравнения Эйнштейна (если убрать космологическую постоянную) описывают несколько удивительных вариантов устройства Вселенной, обнаруженных Фридманом.

По горизонтальной оси отложено время, по вертикальной оси — расстояние между галактиками. Представим себе, что какая-то сила в момент времени, обозначенный цифрой 0, придала начальные скорости сгусткам материи (например, галактикам), они разлетаются, и расстояние между ними со временем увеличивается.

Дальше происходящее зависит от средней плотности материи во Вселенной. Если плотность (количество массы в единице объема) велика (больше не­коего критического значения) — разлет галактик должен происходить все медленнее из-за притяжения между ними. Можно себе представить, что все галактики связаны между собой резиновыми жгутами, которые препятствуют разлету. Галактики движутся все медленнее и однажды остановятся. Этому моменту соответствует верхняя точка кривой 1 на графике выше. Ситуация напоминает полет брошенного вверх камня, который не может преодолеть притяжение Земли, летит вверх с замедлением и останавливается на мгновение, после чего начинает с ускорением падать обратно на Землю. Точно так же галактики начинают падать друг на друга — сближаться с ускорением под воздействием собственного притяжения и в конце концов должны столкнуться, образовав единый ком вещества.

Если средняя плотность материи во Вселенной равна некой критической величине, разлет галактик нико­гда не остановится — тяготение не сможет справиться с инерцией начального толчка. По мере того как галактики будут оказываться все дальше друга от друга, сила притяжения между ними будет ослабевать, и график все больше будет походить на прямую (кривая 2).

Перейти на страницу:

Похожие книги

Мир в ореховой скорлупке
Мир в ореховой скорлупке

Один из самых блестящих ученых нашего времени, известный не только смелостью идей, но также ясностью и остроумием их выражения, Хокинг увлекает нас к переднему краю исследований, где правда кажется причудливее вымысла, чтобы объяснить простыми словами принципы, которые управляют Вселенной.Великолепные цветные иллюстрации служат нам вехами в этом странствии по Стране чудес, где частицы, мембраны и струны движутся в одиннадцати измерениях, где черные дыры испаряются, и где космическое семя, из которого выросла наша Вселенная, было крохотным орешком.Книга-журнал состоит из иллюстраций (215), со вставками текста. Поэтому размер ее больше стандартной fb2 книги. Иллюстрации вычищены и подготовлены для устройств с экранами от 6" (800x600) и более, для чтения рекомендуется CoolReader.Просьба НЕ пересжимать иллюстрации, т. к. они уже сжаты по максимуму (где-то Png с 15 цветами и более, где то jpg с прогрессивной палитрой с q. от 50–90). Делать размер иллюстраций меньше не имеет смысла — текст на илл. будет не читаемый, во вторых — именно по этой причине книга переделана с нуля, — в библиотеке была только версия с мелкими илл. плохого качества. Макс. размер картинок: 760(высота) x 570(ширина). Книга распознавалась с ~300mb pdf, часть картинок были заменены на идент. с сети (качество лучше), часть объединены т. к. иногда одна илл. — на двух страницах бум. книги. Также исправлена последовательность илл. в тексте — в рус. оригинале они шли на 2 стр. раньше, здесь илл. идет сразу после ссылки в тексте. Psychedelic

Стивен Уильям Хокинг

Астрономия и Космос