Читаем Вселенная. Руководство по эксплуатации полностью

Так, значит, Вселенная расширяется, однако галактики в ней практически не движутся. Как же это все на самом деле устроено? Придется вернуться к эйнштейновской общей теории относительности. Джон Арчибальд Уилер блестяще описал эту теорию известным афоризмом: «Пространство диктует материи, как двигаться, а материя диктует пространству, как искривляться», и именно так и следует о ней думать.

Мы не забыли о своем обещании держаться подальше от математики, однако формулировка Уилера, по сути, — это сухое изложение главного уравнения общей теории относительности — эйнштейновского уравнения поля. Приводить его здесь мы не будем, но кое-что о нем нужно знать.

Левая сторона уравнения поля[97] определяет, насколько две точки далеки друг от друга и в пространстве, и во времени, — эта величина называется «метрика», — а если мы посмотрим, как метрика меняется в пространстве, то сможем описать, насколько оно искривлено.

Метрике отводится настолько важная роль, поскольку частицы ленивы и выбирают именно тот маршрут, который позволяет минимизировать время на дорогу. В плоском (то есть лишенном гравитации) пространстве самый быстрый путь — прямая, как вы, вероятно, и сами догадываетесь, но если пространство искривлено гравитацией, все сильно осложняется.

Представим себе, что вы бросаете мячик приятельнице. Мячик хочет долететь до нее как можно быстрее, так что, вероятно, кратчайший путь — это прямая. Но постойте! Гравитация, как мы видели в предыдущей главе, заставляет время у поверхности Земли идти самую чуточку медленнее, поэтому мяч, вероятно, доберется до вашей приятельницы быстрее, если чуточку поднимется от земли и опишет дугу. С другой стороны, если дуга окажется слишком крутой, мячу придется двигаться быстрее, а мы уже видели, что если мяч летит очень быстро, время для него замедляется. Начинается поиск компромиссов, и мяч следует кривой пространства-времени и летит по дуге. Понятно? Несмотря на все разговоры о релятивистском времени и искривленном пространстве, в слабых гравитационных полях вроде поля Земли гравитация ведет себя именно так, как предсказывал Ньютон.

Но если мы хотим разобраться, как развивается Вселенная в целом, придется вырваться из слабого поля Земли, а для этого нужно сказать два слова о метрике. Напомним, что метрика говорит нам, насколько далеко отстоят друг от друга две точки. Представьте себе, что у вас есть линейка, которая медленно сжимается. И если вы через некоторое время решите измерить, например, расстояние от вас до Парижа, то обнаружите, что оно постоянно увеличивается.

Именно это и происходит в настоящей Вселенной!

Забудьте, чему вас учили в школе: пространство не абсолютно. Мы уже видели, что пространство и время для движущихся наблюдателей и наблюдателей, которые находятся вблизи массивных тел, относительны. Теперь мы понимаем, что по мере старения Вселенной меняется само пространство.

А что же находится по правую сторону эйнштейновского уравнения поля? Уилер нам уже ответил: «Материя диктует пространству, как искривляться». Именно материя Вселенной и говорит Вселенной, как развиваться.

Как же мы разберемся во всем этом, если (на самом деле) даже не знакомы с уравнениями общей теории относительности? Не бойтесь. Помните, что, когда речь заходит о гравитации, физическая интуиция и здравый смысл помогают даже лучше, чем вы думали.

Мы тут довольно бойко рассуждали о расширении пространства, но так ничего и не сказали о том, что же такое это самое пространство. Исаак Ньютон в своих Рrincipia Маthетаtiса много говорил о пространстве и придумал небольшой мысленный эксперимент, позволяющий пояснить, что это такое, на конкретном примере. Вернемся далеко назад — в главу 1, где Рыжий, Галилей и Эйнштейн (не обязательно в этом порядке) обнаружили, что наблюдатель не может определить, двигается он или покоится, если движение происходит равномерно. Играет роль исключительно динамика двух наблюдателей при их относительном движении.

Ньютон представил себе, что на скрученной веревке висит ведро, полное воды. Ведро удерживают в неподвижности, а затем отпускают, и веревка начинает раскручиваться, и ведро вертится. Поначалу вода хочет остаться на месте, и стенки ведра вертятся вокруг нее. Затем вступает в действие сила трения между водой и ведром, и вода начинает крутиться вместе с ведром. И при этом взбирается вверх по стенкам.

Да, понимаем — вы читаете и думаете: «Ну и что?»

Мы так много об этом разглагольствуем, поскольку к концу эксперимента Ньютона относительное движение между ведром и водой отсутствует — тем не менее мы можем сказать, что ведро и вода вертятся. Вот в чем вопрос: откуда ведро «знает», что оно вертится? Почему вода по-прежнему взбирается־ вверх по стенкам, если она никуда не движется относительно ведра?

Перейти на страницу:

Похожие книги

Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика