Вероятно, выработка лишних барионов имела место в конце периода инфляции, примерно через 10-32 секунды после Большого взрыва, а значит, она, вероятно, имела какое-то отношение к унификации электрослабого и сильного взаимодействий. Если закон сохранения количества барионов не действовал тогда, то и сейчас он в некоторой степени тоже не действует.
Представьте себе, что у вас есть собственная великая теория унификации (ВТУ). Первым делом мы бы спросили у вас, сколько, согласно вашей ВТУ, живет типичный протон. Согласно практически всем этим теориям до единой, протоны в конце концов распадаются на позитрон и еще одну частицу под названием пион. Главное различие между разными теориями — средняя продолжительность жизни протона. И это хорошо. Это значит, что если мы сумеем выяснить, сколько живут протоны, то у нас появится отменный критерий точности различных ВТУ — по крайней мере мы сможем тут же просеять эти теории сквозь частое сито.
Некоторые из ранних моделей ВТУ предсказывали, что протон живет примерно 1031 лет. Это очень-очень долго. Гораздо больше возраста Вселенной, поэтому вы вправе предположить, что физики, которые выдвинули эти модели, просто взяли наугад протон-долгожитель и решили, что все равно никто не проживет настолько долго, чтобы опротестовать их нобелевский банковский счет.
К счастью, нам не нужно брать протончик, класть его на стол и ждать, когда он превратится во что-нибудь другое, — у нас есть методы и получше. В 1980-х годах ученые поняли, что для этого нужно построить гигантские подземные бассейны со сверхчистой водой[145].
Главная цель таких экспериментов — посмотреть, распадется ли хоть один протон в бассейне, если оставить его в покое. Если да, то заряженные частицы, создавшиеся при распаде, промчатся по бассейну и испустят излучение, которое будет зафиксировано детекторами. Поскольку протонов много, разумно предположить, что, если наблюдать достаточно долго, хоть один да покинет сию юдоль скорби.
Что-то подобное мы видели в главе 3, когда говорили о космическом генераторе случайных чисел. Представьте себе, что протон и в самом деле живет 1031 лет. Это значит, что каждый год космический генератор случайных чисел бросает игральную кость, у которой 1031 граней, по одному разу на каждый протон в бассейне. Если у генератора выпадет единичка, соответствующий протон распадается. «Супер-Камиоканде» находится в шахте Моцуми неподалеку от японского города Хида, эксперименты подобного рода идут уже 25 лет, и еще ни разу не было засвидетельствовано ни одного распада[146].
Это хорошие новости, поскольку отрицательный результат означает, что в обозримом будущем нам не придется спонтанно распадаться на высокоэнергичные частицы. С другой стороны, это плохие новости для некоторых ВТУ, поскольку теперь их можно легко опровергнуть. В наши дни остается все меньше и меньше моделей, соответствующих все — более и более долгой минимальной жизни протонов, но многие из них предполагают примерно 1036 лет.
Учитывая, насколько мы близки к точному определению этого периода, стоит ли удивляться, что мы уверены, будто определим его совсем скоро?
III. Какова масса нейтрино?
Обсуждая кандидатов на роль темной материи, мы поговорили и о нейтрино и тут же отмели его. «Легковат», — сказали мы. Если бы вы спросили нас, какова на самом деле масса нейтрино, мы бы начали ерзать и опускать глаза. Попросту говоря, мы не знаем, а долгое время вообще полагали, что нейтрино лишены массы. Оказывается, это не так, но первые признаки того, что нейтрино обладают массой, мы пронаблюдали практически случайно.
Нейтрино — этакие проказливые чертенята. Поскольку они участвуют только в слабом взаимодействии, их нельзя взвесить, а поскольку они электрически нейтральны, на них не действуют электромагнитные поля. Зато мы можем создавать их в ядерных реакторах, и природные реакторы, они же звезды, производят их в изобилии.
Мы расскажем вам одну историю. Примерно 160 тысяч лет назад в одной галактике неподалеку от нас — в Большом Магеллановом Облаке — произошла вспышка сверхновой. Поскольку свет добирается до нас не мгновенно, увидели мы эту вспышку лишь в 1987 году, и это было одно из самых примечательных астрономических событий в истории человечества. Вместе с излучением во время вспышки высвободилось громадное количество нейтрино — настолько громадное, что очень много нейтрино долетели до Земли. Нам повезло, у нас были наготове мощные детекторы, и мы засекли пик нейтрино в тот самый момент, как только увидели свет вспышки. То есть нейтрино прибыли к нам если не со скоростью света, то по крайней мере настолько близко к скорости света, что мы не были в состоянии отметить разницу. Это было предпоследнее свидетельство в пользу того, что если нейтрино и не лишены массы, они необычайно легкие даже по субатомным стандартам.