Внезапно я понял, что пути этих лучей никогда не сблизятся друг с другом. Если бы это произошло, то рано или поздно они бы пересеклись. Это все равно что встретить другого беглеца, удирающего от полиции в противоположном направлении, – оба оказались бы в наручниках! (Или, в нашем случае, упали бы в черную дыру.) Но если бы черная дыра поглотила эти лучи, они не могли бы находиться на ее границе. Посему пути лучей на горизонте событий всегда должны быть параллельны друг другу или расходиться. Можно взглянуть на происходящее и с другого угла: горизонт событий, то есть границу черной дыры, можно сравнить с краем тени – тени неминуемой гибели. Если посмотреть на тень, которую отбрасывает предмет, освещенный удаленным источником, например Солнцем, то видно, что лучи света на краю тени не сближаются друг с другом.
Если пути лучей света, образующие горизонт событий – границу черной дыры, – никогда не сближаются, то площадь горизонта событий может оставаться неизменной или увеличиваться со временем, но ни в коем случае не уменьшаться. Ведь это означало бы, что как минимум часть лучей света на границе должны сближаться. В действительности площадь эта увеличивается каждый раз, когда вещество или излучение падают в черную дыру (рис. 7.2). А при столкновении или слиянии двух черных дыр и последующем образовании новой черной дыры площадь горизонта событий последней будет больше или равна сумме площадей горизонтов событий исходных черных дыр (рис. 7.3). Это свойство «неуменьшения» площади горизонта события накладывает важное ограничение на возможное поведение черных дыр. Я так разволновался из-за этого открытия, что той ночью почти не спал. На следующий день я позвонил Роджеру Пенроузу, и он согласился со мной. Вообще-то я думаю, что он уже знал об этом свойстве площади [горизонта событий]. Правда, он использовал немного иное определение черной дыры. Он не осознавал, что оба определения задают одни и те же границы черной дыры и, следовательно, одно и то же значение площади при условии, что черная дыра достигла состояния, которое не меняется со временем.
Рис. 7.2 и 7.3
«Неуменьшение» площади черной дыры отсылает нас к понятию энтропии – физической величине, которая является мерой хаоса в системе. С точки зрения здравого смысла, если никак не вмешиваться в ход событий, то степень беспорядка имеет свойство увеличиваться. (Чтобы убедиться в этом, достаточно просто перестать заниматься ремонтом в доме!) Из беспорядка можно получить порядок (например, покрасить стены), но это потребует усилий и энергии, а значит, уменьшит количество «упорядоченной» энергии в нашем распоряжении.
Точная формулировка этой идеи известна как второе начало термодинамики. Закон гласит, что энтропия изолированной системы всегда возрастает и что при объединении двух систем энтропия объединенной системы больше суммы энтропий исходных систем. Рассмотрим, например, систему молекул газа в контейнере. Молекулы можно представить как маленькие бильярдные шарики, которые постоянно сталкиваются друг с другом и отскакивают от стенок емкости. Чем выше температура газа, тем быстрее движутся молекулы, тем, следовательно, чаще и сильнее они сталкиваются со стенками и тем выше создаваемое ими давление на стенки. Предположим, что первоначально молекулы были сосредоточены в левой стороне контейнера, отделенной перегородкой. Если убрать перегородку, молекулы будут стремиться заполнить обе половины контейнера. В какой-то момент они все случайно могут оказаться в правой или левой части контейнера, но намного больше вероятность того, что количество молекул в правой и левой частях будет практически одним и тем же. Такое состояние менее упорядоченное – или более неупорядоченное, – чем исходное состояние, когда молекулы находились с одной стороны. Поэтому говорят, что энтропия газа возросла. Аналогичным образом можно представить себе систему из двух контейнеров, один из которых содержит молекулы кислорода, а другой – молекулы азота. Если соединить контейнеры и убрать разделяющую их стенку, то молекулы кислорода и азота начнут смешиваться. Наиболее вероятно, что вскоре оба контейнера будет заполнять практически однородная смесь молекул кислорода и азота. Это состояние менее упорядоченное и поэтому характеризуется бо́льшей энтропией, чем исходное состояние газов в двух отдельных контейнерах.