Читаем Вселенная в электроне полностью

В реакции испускания ядром электрона была обнаружена таинственная пропажа. Суммарная энергия ядра и электрона после реакции всякий раз оказывалась меньше энергии исходного нераспавшегося ядра. Чуть-чуть меньше, но и это недопустимо, так как закон сохранения энергии должен выполняться точно. Энергия не может исчезать без следа или возникать из ничего — иначе можно было бы построить вечный двигатель. Вот и пришлось физикам из двух зол выбирать меньшее: или признать, что не верен закон сохранения энергии, или допустить, что энергию уносит какая-то неведомая неуловимая частица, не имеющая электрического заряда. С такой гипотезой выступил швейцарский теоретик Вольфганг Паули. Частицу назвали нейтрино — нейтрончик.

На другой стороне Атлантического океана американский физик Курт Андерсон изучал космические лучи с помощью прибора, который называется камерой Вильсона. Это плотно закрытый сосуд, заполненный насыщенными парами спирта. Такой пар находится в крайне неустойчивом состоянии. Стоит только внутри занимаемого им объема образоваться какой-либо неоднородности, как вокруг нее сразу же начинают конденсироваться капельки тумана. Проходя сквозь камеру, заряженная частица своим электрическим полем повреждает электронные оболочки атомов, однородность среды нарушается, и там, где прошла частица, остается след — сконденсировавшаяся струйка тумана, толщина и плотность которой зависит от массы частицы. Похожее явление можно наблюдать, когда высоко в безоблачном небе пролетает реактивный самолет. За ним тянется ровный белый след. Это те же капельки тумана, которые сконденсировались на молекулах газов и частичках топлива, выбрасываемых моторами самолета. Наверное, каждый не раз видел такой след в небе. Тонкие белые полосы, они особенно хорошо смотрятся ранним утром или вечером, когда их освещают косые лучи солнца.

Если камеру Вильсона поместить еще и в магнитное поле — например, между полюсами сильного электромагнита, — то траектории частиц изогнутся, положительных — в одну сторону, отрицательных — в другую. (Вспомним правило буравчика для направления электрического тока в магнитном поле!) Это позволяет установить знак заряда частицы. Одна из стенок камеры стеклянная, и сквозь нее хорошо видно, что происходит внутри. Такой метод исследования космических лучей разработан советским ученым Д. В. Скобельциным. Им и воспользовался американский физик.

Неожиданно для себя Андерсон обнаружил тонкие, выходящие из одной точки следы, похожие на букву Л с загнутыми ножками. Одну половину буквы «рисовал» электрон, вторую — точно такая же частица, но с зарядом противоположного знака. Положительный электрон. Андерсон назвал его позитроном — от греческого слова «позитро», то есть положительный.

Далее мы еще много раз будем говорить об удивительных близнецах-братьях электроне и позитроне. Многие их тайны не разгаданы до сих пор. Но сейчас нам важно только одно: сам факт существования в природе положительно заряженных частиц — позитронов.

Основываясь на этом факте и на гипотезе Паули о нейтрино, Д. Д. Иваненко и И. Е. Тамм предположили, что частицы внутри ядра обмениваются не только фотонами, но еще и парами частиц, то есть могут испускать и поглощать сразу по два воланчика — электрон и нейтрино или позитрон и нейтрино. Испустив позитрон и нейтрино, или, наоборот, поглотив электрон и нейтрино, протон становится нейтроном. Соответствующим образом ведет себя и нейтрон, он становится протоном.

Может возникнуть вопрос: а зачем нужна пара частиц, разве протон и нейтрон не могут обмениваться одним электроном или позитроном? Нет, не могут. Это им строго-настрого запрещено. Дело в том, что частицы, подобно маленьким волчкам, безостановочно вращаются вокруг своей оси. И вращение их одинаковое, различие лишь в направлении — слева направо или справа налево. Отрываясь от протона или нейтрона, рождающаяся частица может унести с собой их вращение, а это невозможно — невращающихся протонов и нейтронов не существует. Когда же испускается пара частиц, они могут вращаться в противоположных направлениях и тогда в сумме пара никакого вращения не уносит.

Теория внутриядерных сил, разработанная Иваненко и Таммом, на некоторое время стала главным событием физики. Однако более детальные расчеты вскоре показали, что испускание двух воланов происходит слишком редко и образуемых ими «ремней» (точнее было бы сказать — тоненьких ниточек!) недостаточно, чтобы скрепить ядро.

Перейти на страницу:

Все книги серии Люди. Время. Идеи

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука