Читаем Вселенная в зеркале заднего вида полностью

Не буду утруждать Алису. Почти любой эксперимент, какой может провести Алиса, в Стране чудес будет выглядеть точно так же, как и в нашем мире. Однако если Алиса будет очень упорной и настойчивой, то заметит малюсенькую разницу — благодаря участию частицы, о которой очень часто забывают, так называемого нейтрино.

При всей своей скромности и незаметности нейтрино (что значит «нейтральненькое» — правда, прелесть?) — одна из самых распространенных частиц во вселенной. Больше здесь только фотонов. Мы часто забываем о них, поскольку 1) они такие легкие, что лишь в 1998 году эксперимент на детекторе Супер-Камиоканде в Японии показал, что у нейтрино вообще есть масса, и 2) они электрически нейтральны, а следовательно, с ними не взаимодействует свет.

Зарегистрировать нейтрино необычайно трудно. Даже увидеть их мы смогли лишь в 1956 году, с приходом ядерной эры. В процессе повседневной работы ядерных реакторов создается очень много нейтрино и антинейтрино. Фредерик Райнес и Клайд Коуэн из Национальной лаборатории в Лос-Аламосе поставили эксперимент, в ходе которого антинейтрино сталкивались с протонами и то и дело создавали позитроны. Поскольку позитроны только об одном и думают — как бы самоуничтожиться, столкнувшись с электронами, и создать свет — Райнес и Коуэн измерили характеристики получившегося света и доказали, что нейтрино действительно существуют. Пара пустяков!

Нейтрино так неохотно взаимодействуют с другими частицами, что если бы мне пришлось запустить нейтрино в свинцовую пластину толщиной в световой год, шансы, что оно проскочит ее насквозь, ничего не задев, составляли бы пятьдесят на пятьдесят. К счастью, нам достаточно было увидеть всего несколько нейтрино, чтобы узнать о них ужасно много. Если выстроить детекторы под горами — что заставляет вспомнить средиземскую Морию — можно регистрировать с полдюжины нейтрино в день.

Между тем роль нейтрино в нашей жизни очень заметна. Я уже упоминал три фундаментальные взаимодействия — это сильное ядерное взаимодействие, электромагнетизм и гравитация. Об одном я еще не говорил — это слабое взаимодействие. Когда происходят слабые взаимодействия, почти всегда так или иначе участвует нейтрино. И хотя взаимодействие и слабое, именно благодаря этой силе солнце превращает водород в гелий, а в качестве побочного продукта вырабатывает свет и тепло, обеспечивающие жизнь на Земле. Нет слабого взаимодействия — нет и жизни, нет и нас с вами.

По большей части слабое взаимодействие в Стране чудес из антивещества происходит совершенно так же, как и на нашей Земле, однако есть одно очень тонкое различие, которое проявляется в так называемом спине — направлении вращения частицы. Казалось бы, в понятии спина нет ничего непривычного, но на самом деле спин — это очень странно, гораздо страннее, чем кажется на поверхностный взгляд.

Представьте себе частицу, например, электрон, в виде маленькой заряженной сферы. Спин электрона не такой, как у земли. Земля оборачивается вокруг своей оси за один день. На самом деле это и есть определение дня. Однако тут-то и таится подвох: из-за притяжения луны продолжительность дня медленно-медленно нарастает, примерно на две миллисекунды в столетие[18]. А изменить спин у субатомных частиц в принципе невозможно ни при каких условиях. Все до единой частицы, обнаруженные нами до сих пор, обладают врожденным неизменным спином, в том числе и нейтрино, о которых мы только что беседовали. Нейтрино, электроны, а если уж на то пошло, то и протоны нельзя ни затормозить, ни разогнать.

У некоторых частиц — точнее, у заряженных — измерить направление спина относительно легко. Направление спина измеряют точно так же, как находят полюса у Земли: при помощи магнитов. Внутри у Земли расплавленное железо, и когда Земля вращается, это железо генерирует гигантское магнитное поле. А мы можем измерить это магнитное поле при помощи другого магнита — хотя вы, вероятно, знаете его под названием «компас».

Электроны во многом устроены точно так же. При вращении они генерируют маленькие магнитные поля. Если посмотреть на электрон сверху, понятно, что он может вращаться двумя способами. Если один электрон вращается по часовой стрелке, говорят, что у него спин направлен вверх, а если против, говорят, что спин направлен вниз.

Чтобы разобраться, где верх, а где низ, можно пропустить электроны через устройство, состоящее из пары обычных магнитов, и посмотреть, в какую сторону электрон отклонится. На рисунке внизу показано, что у тех, которые отклоняются вверх, спин направлен вверх, а те, которые отклоняются вниз — вниз.



Ориентировать магниты мы можем как угодно. Понятия «вверх» и «вниз» в нашем эксперименте никак не связаны с тем, как ориентирована Солнечная система, и вообще ни с чем, просто нам будет гораздо легче не сойти с ума, если мы с вами договоримся установить системы координат так, чтобы потолок и у меня, и у вас был сверху.

Перейти на страницу:

Все книги серии Золотой фонд науки

φ – Число Бога
φ – Число Бога

Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вселенная! Курс выживания
Вселенная! Курс выживания

Эта книга – идеальный путеводитель по самым важным и, конечно, самым увлекательным вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц, и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?» Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Я. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина.Настоящий подарок для всех, кого интересует современная наука, – от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук.

Джефф Бломквист , Дэйв Голдберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От Дарвина до Эйнштейна
От Дарвина до Эйнштейна

Эта книга – блестящее подтверждение вечной истины «не ошибается только тот, кто ничего не делает»! Человеку свойственно ошибаться, а великие умы совершают подлинно великие ошибки. Американский астрофизик Марио Ливио решил исследовать заблуждения самых блистательных ученых в истории человечества и разобраться не только в сути этих ляпсусов, но и в том, какие психологические причины за ними стоят, а главное – в том, как они повлияли на дальнейший прогресс человечества. Дарвин, Кельвин, Эйнштейн, Полинг, Хойл – эти имена знакомы нам со школьной скамьи, однако мы и не подозревали, в какие тупики заводили этих гениев ошибочные предположения, спешка или упрямство и какие неожиданные выходы из этих тупиков находила сама жизнь… Читателя ждет увлекательный экскурс в историю и эволюцию науки, который не только расширит кругозор, но и поможет понять, что способность ошибаться – великий дар. Дар, без которого человек не может быть человеком.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги