Понять, почему мир до сих пор не исчез в грандиозной вспышке света, помогла квантовая теория. Она утверждает, что привычный образ электрона как крошечной частицы, вращающейся по орбите вокруг ядра, неверен. Электрон в любой момент времени находится не в какой-то определенной точке, а одновременно во всех точках, расположенных вокруг ядра, каждая из которых обладает различной вероятностью. Его конкретное местоположение можно установить только в момент наблюдения. Лучше всего представить себе электроны в виде расплывчатого облака вокруг ядра. Конечно, такую картину нарисовать сложнее, поэтому во многих учебниках все еще присутствует старая планетарная модель.
Электроны, создающее это облако, могут существовать только при определенном уровне энергии. Можно представить себе, что они передвигаются по заданным рельсовым путям. Если придать им дополнительный импульс энергии, они перескакивают на другой путь. Но этот импульс должен иметь строго определенную величину, так как электрон не может находиться где-то посредине между путями. Такие фиксированные импульсы энергии называются квантами. От этого слова и произошло название «квантовая теория».
Правда, термин «квантовый переход» («квантовый скачок») в нашей повседневной речи приобрел в последнее время какой-то странный смысл. В физике под ним понимается переход в новое состояние, для которого требуется минимально возможное количество энергии. Поэтому странно слышать, когда квантовым скачком называют какие-то грандиозные преобразования.
Обычно энергию, необходимую для перехода электрона на более высокий уровень, дает свет. Свет несет энергию (и это замечательно, потому что именно так энергия Солнца доходит до нас через безвоздушное пространство космоса). А когда электрон опускается на более низкий уровень, он сам излучает свет. Поскольку электрон может находиться только на одном из предназначенных для него энергетических уровней, эта энергия передается строго определенными порциями – квантами. Свет тоже состоит из определенных порций – частиц, называемых фотонами.
Очарование кварков
Тело человека состоит из молекул, а молекулы – из атомов, каждый из которых содержит протоны, нейтроны и электроны. Однако теперь мы знаем, что прежние представления о протонах и электронах как фундаментальных единицах атома тоже неверны. Протоны и нейтроны состоят из
От этой разницы зависит электрический потенциал протона и нейтрона, так как заряд нижнего кварка составляет ‑1/3, а верхнего – +2/3. В результате положительный электрический заряд протона равен 1, а нейтрон электрически нейтрален. Конечно, неправильно, что заряд частицы представляет собой дробную величину. На самом деле заряд кварка вовсе не 1/3 и не 2/3. Эти величины следует понимать как исходные единицы электрических зарядов. Однако поскольку протоны и электроны были известны еще до открытия кварков и им присвоили заряды, равные единице, нам приходится соглашаться на то, что заряды могут быть и дробными.
Название «кварк» было введено в научный оборот американским физиком М. Гелл-Маном. Первоначально он произносил его как «кворк», но как-то раз наткнулся на одну строку из романа Джеймса Джойса «Поминки по Финнегану»: «Три кварка для мистера Марка!» То, что кварков было именно три, показалось Гелл-Ману символичным, и он стал произносить это слово по-новому.
Запутанная стандартная модель
Дойдя до кварков, мы наконец действительно достигли предела неделимости. Именно из этих фундаментальных частиц состоит тело человека и вся Вселенная.
Физики создали так называемую стандартную модель, которая описывает весь мир, основываясь примерно на девятнадцати различных элементарных частицах. Двенадцать из них – это частицы, составляющие материю. Это кварки, электроны, а также еще несколько загадочных частиц, которые образуются в ядерных реакциях и экспериментах на коллайдере. Еще пять частиц предназначены для передачи различных сил. Так, например, фотон, будучи частицей света, одновременно является носителем электромагнитных сил.