Читаем Вселенная. Вопросов больше, чем ответов полностью

Но как поведут себя темные линии спектра, если объект — до­пустим, звезда — не просто летит куда-то, но еще и вращается во­круг своей оси? В этом случае часть объекта будет приближаться к нам, что вызовет фиолетовое смещение, а другая часть — уда­ляться от нас, из-за чего смещение будут красным. В сумме это приведет к размытию спектральных линий, и по степени размы­тия можно будет судить о скорости вращения объекта. Именно так измеряются, например, скорости вращения звезд. В наше время все это для астрономов более чем тривиально, на уровне студенческих лабораторных работ.

Итак, химический состав (включая ионы и изотопы) косми­ческих объектов и среды, радиальная скорость, скорость враще­ния... что еще?

Еще природа излучения. Распределение его спектральной плотности по диапазону частот покажет нам, имеем ли мы дело с Шиловым излучением или с каким-нибудь иным. Например, излучение расширяющихся оболочек Сверхновых звезд (типа

39

Крабовидной туманности) преимущественно не тепловое, а син- хротронное, вызванное движением заряженных релятивистских частиц в магнитном поле. Радиоспектр Крабовидной туманности показывает это как нельзя лучше. Имеются и другие источни- ки нетеплового излучения, скажем, космические мазеры, легко идентифицируемые опять-таки по спектрам.

И еще простой пример. Допустим, звезда или группа звезд погружена в светлую туманность. Как узнать природу светимо­сти этой туманности? Является ли ее свечение результатом воз­буждения атомов или же наблюдается простое отражение ту­манностью света звезд? Такая ситуация имеет место в Плеядах. Умозрительно было понятно, что ярчайшие звезды Плеяд недо­статочно горячи для первого предположения, но известно, сколь часто умозрительные предположения приводят к ошибкам. Зато спектр туманности раскрыл ее природу «на раз» — он оказался звездным, конечно, с наложением линий поглощения, опреде­ляемым туманностью. Вывод: это не эмиссионная, а чисто отра­жательная туманность, да еще не имеющая с Плеядами ничего общего, кроме того, что туманность и скопление случайно встре­тились в пространстве.

Можно привести еще много примеров чрезвычайной полез­ности спектральных исследований, но лучше мы перейдем от описаний инструментария к астрономической конкретике.

ЧАСТЬ II

БЛИЖАЙШИЕ

ОКРЕСТНОСТИ

Нравится это нам или нет, но мы живем среди отходов — от­ходов «производства» звезд и даже сами из них состоим. По со­временным представлениям, наше Солнце — весьма типичная звезда — образовалось чуть менее 5 млрд лет назад из газопы­левой материи. Сжатие исходного протозвездного облака под действием собственной гравитации не было равномерным — центральные области газово-пылевого сгустка сжимались бы­стрее периферии. Когда в центре сгустка загорелась протозвезда, давление света сначала уравняло силу тяготения для падающей материи, а затем начало выталкивать периферийные газ и пыль, которым «не повезло» попасть в звезду. Под действием выталки­вающей силы легкие элементы мигрировали дальше от Солнца и образовали газовые планеты-гиганты Юпитер, Сатурн, Уран и Нептун, а также великое множество преимущественно ледя­ных тел; тяжелые же элементы остались во внутренних обла­стях Солнечной системы и после ряда драматических коллизий слиплись в планеты земной группы: Меркурий, Венеру, Землю, Марс и Главный пояс астероидов. К началу формирования пла­нет остатки газово-пылевого сгустка превратились вследствие вращения в протопланетный диск. Именно поэтому орбиты пла­нет лежат более или менее в одной плоскости.

Вот так — в упрощенном до предела изложении, пока нам до­статочно и такого — выглядит сценарий рождения Солнечной системы. Но хоть наш обыденный мир состоит из отходов звез­дообразования, это весьма ценные отходы! Кроме того, Земле повезло в одном очень существенном отношении — условия на ее поверхности были столь благоприятны для возникновения белковой жизни, что жизнь не замедлила появиться уже в пер­вые 600-700 млн лет существования Земли как космического тела. Во всяком случае, древнейшие горные породы с изменен­ным изотопным соотношением углерода, что однозначно ука­

42

— Ближайшие окрестности —

зывает на существование фотосинтеза, имеют возраст порядка 3 85 млрд лет. Учитывая колоссальную сложность задачи нала­живания «производственного процесса» по самосборке нуклео­тидных последовательностей из простейших химических соеди­нений — великолепный результат!

Перейти на страницу:

Похожие книги