При этом, согласно теореме о вириале, лишь половина освободившейся в результате сжатия гравитационной энергии будет излучена в пространство — вторая половина пойдет на нагрев облака. Кипя, оно будет продолжать сжиматься до тех пор, пока в его центре не начнутся ядерные реакции, и даже некоторое время после этого. Как мы знаем, при повышении температуры в первую очередь начинают идти реакции на легких ядрах с низким кулоновским барьером. Это главным образом реакции
l80
превращения дейтерия в гелий. Для начала ядерной реакции им достаточно миллиона градусов. Но мы помним также и то, что этих ядер мало, выгорают они быстро и способны лишь приостановить сжатие на недолгое время. Сжатие протозвезды остановится лишь тогда, когда заработают ядерные реакции на водороде, и не просто заработают, а обеспечат достаточное энерговыделение, чтобы давление света скомпенсировало гравитацию. В этот момент протозвезда становится молодой звездой главной последовательности.
Сколько же времени проходит от начала гравитационного сжатия до «посадки» звезды на главную последовательность? По-разному. Это время сильно зависит от массы протозвезды. Расчеты показывают, что для массы, равной массе Солнца, оно составляет около 50 млн лет, для вдвое меньшей массы — уже 155 млн лет, а протозвезда с массой в 15 масс Солнца станет звездой всего-навсего за 6о тыс. лет.
Модель Хаяши-Накано, как и большинство других моделей эволюции протозвезд, разумеется, крайне упрощена, поскольку не учитывает вращения протозвездного облака, градиента плотности, магнитных полей и др. Учет вращения, например, приводит к образованию вокруг звезды газово-пылевых (протопла- нетных) дисков. Что и подтверждается: протопланетные диски обнаружены методами инфракрасной астрономии у многих молодых звезд.
Любопытны модели формирования массивных звезд. Расчеты показали, что чем протозвездное облако массивнее, тем меньшая часть его массы превратится в звезду и тем большая часть внешней оболочки сжимающегося облака будет остановлена инфракрасным излучением народившейся в центре облака протозвезды и начнет расширяться. Массивные звезды рождаются окруженными плотным «коконом» газопылевой материи, причем масса «кокона» может в разы превышать маесу звезды. Излучение ионизует и «расталкивает» вещество «кокона», но к тому времени, когда оно станет прозрачным, протозвезда уже превратится в звезду. Поэтому мы не можем наблюдать массив
181
ные протозвезды методами оптической астрономии — эти протозвезды скрыты от нас толщей непрозрачной материи. Но они проявляют себя как «точечные» инфракрасные источники и — на определенной стадии своей эволюции — как космические источники мазерного излучения, наблюдаемого в радиодиапазоне. Рабочим телом космического мазера является вещество «кокона», а накачку осуществляет излучение протозвезды.
При меньших массах протозвезд «коконы» невелики, а сроки дрейфа к главной последовательности длинны, так что покров темного вещества успевает худо-бедно развеяться в пространстве, сделав протозвезды видимыми. На что они похожи?
Беглый взгляд причисляет их к красным гигантам — сильно проэволюционировавшим звездам, — но спектр говорит иное. В нем есть линии поглощения лития, чего нет ни у Солнца, ни у типичных красных гигантов. Что и понятно: у лития низкий кулоновский барьер, поэтому в «нормальных» звездах он давно выгорел вслед за дейтерием. Кроме того, эти странные красные гиганты, известные как звезды типа Т Тельца, быстро и хаотично меняют свой блеск и, что еще важнее, всегда наблюдаются в скоплениях, погруженных в плотные облака газово-пылевой межзвездной среды. Часто, хотя и не всегда, Т-ассоциации совпадают с О-ассоциациями, т. е. группами заведомо молодых горячих звезд. Все наблюдательные факты говорят в пользу того, что звезды типа Т Тельца суть не что иное, как протозвезды.
Забавное совпадение: на диаграмме Герцшпрунга-Рессела они располагаются там же, где «нормальные» красные гиганты, уже покинувшие главную последовательность. Как будто старики явились еще разок взглянуть на места, где прошло их детство...
Модель Хаяши-Накано предсказывает быстрое увеличение светимости звезды в конце гравитационного сжатия. Еще в 1939 году А. Вахман обнаружил, что переменная звезда FU Ориона за 120 суток увеличила свой блеск на 6 звездных величин, т. е. в 250 раз, и не вернулась к исходному блеску. Впоследствии было найдено еще несколько подобных звезд, получивших название «фуоры». Их характерная черта: быстрое увеличение
182