Можно найти ложные эффекты от лекарства в подгруппах в настоящих исследованиях, если сделать достаточно большое число хитрых анализов.28
Исследователи, занимавшиеся оценкой эффективности хирургической процедуры под названием эндартерэктомия, решили шутки ради проверить, до каких пределов можно дойти, разделяя пациентов по разным возможным подгруппам и анализируя результаты в пределах каждой из них. Сначала они обнаружили, что успешное проведение хирургического вмешательства зависело от того, в какой день недели родился пациент (см. таблицу ниже).29 Разумеется, если врач при принятии клинических решений основывается на этой информации, то его можно смело назвать дураком. Была заметна также прекрасная, почти линейная зависимость между месяцем рождения пациента и клиническим результатом: у пациентов, родившихся в мае и июне, наблюдался огромный положительный эффект, а затем, по мере смены месяцев, положительное воздействие все больше снижалось до марта, после чего операция становилась просто опасной. Если бы данные относились к такой биологически правдоподобной переменной, как возраст, этот результат в данной подгруппе было бы очень трудно игнорировать.Наконец, при проведении исследования ISIS-2 сравнивался полезный эффект, оказываемый аспирином или плацебо на пациентов, которые предположительно недавно пережили сердечный приступ. Обнаружилось, что аспирин улучшал ряд показателей, однако исследователи смеха ради решили сделать подгруппный анализ. В ходе его выяснилось, что, хоть в целом аспирин и был эффективным, он не оказывал влияния на пациентов, родившихся под знаками Весов и Девы. Еще раз повторимся: если группировать данные различными способами, можно просто произвольно формировать какие угодно подгруппы с любыми, даже самыми нелепыми показателями.
Так значит ли это, что родившимся под знаками Весов и Девы пациентам не нужно давать лекарств? Вы конечно скажете «нет» и будете правы. Вы окажетесь гораздо мудрее всех тех медиков, кто прибегал к подгруппному анализу. Исследование CCGS обнаружило, что аспирин был эффективен при предотвращении инсультов и смертельных случаев у мужчин, но не у женщин,30
в результате женщин в течение почти 10 лет лишали необходимого лечения, пока дальнейшие исследования и обзоры не показали, что аспирин положительно действует и на их организм.Эффект от каротидной эндартерэктомии у пациентов с ≤70 % симптоматическим стенозом при европейском исследовании операции 126 в зависимости от дня недели, в который родился пациент
Это один из множества подгруппных анализов. По их вине в медицинскую литературу попадают неверные данные и часто некорректно выявляются подгруппы людей, которым не становится лучше от лечения, считающегося эффективным. Так, например, мы думали, что тамоксифен, лекарство для блокирования гормонов, не подходил для лечения рака груди у женщин, если они были моложе 50 лет (мы были не правы). Мы думали, что тромболитики были неэффективными и даже вредными при лечении сердечных приступов у людей, которые уже имели его в анамнезе (мы ошибались). Мы думали, что лекарство под названием АКФ-ингибиторы прекращало понижать количество смертельных случаев у пациентов с сердечной недостаточностью, если они также принимали аспирин (мы заблуждались). Интересно и необычно то, что ни один из этих результатов не был получен в результате жадности до денег исследователей. Людьми двигали амбиции, возможно, стремление получить новые результаты. Сыграло свою роль и незнание рисков при проведении подгруппного анализа, и игнорирование фактора случайности.
Другой способ фальсификации данных: взять какую-либо группу исследований, выбрать подходящие фрагменты с описанием действия препарата и заставить его выглядеть более эффективным, чем он есть на самом деле. Если сделать это с одним исследованием одного лекарства, то уловка тут же будет раскрыта. Однако такую операцию можно совершить в рамках целой программы клинических исследований и создать путаницу, в которой никто не сможет разобраться.
Мы уже видели, что положительные результаты исследований публикуются чаще и распространяются интенсивнее, чем отрицательные, и это может сбивать с толку. По сути проблема состоит в следующем: когда мы делаем систематический обзор только по исследованиям, по которым опубликовали результаты, мы видим только ту выборку, которая содержит больше положительных результатов. В нашу папку для отбора работ, по которым будет сделан обзор, попадают только лучшие из них. Однако глупо думать, что все проводимые исследования приносят только положительные результаты.
Эта же самая проблема — каким образом отбираются образцы исследований — может быть представлена другим, более интересным способом, который лучше всего показать на примере.