Из всего этого следует, что для очень коротких промежутков времени – таких коротких, что скорость частиц невозможно измерить с высокой точностью, – квантовая механика допускает, что эти частицы будут вести себя так, словно движутся быстрее света! Но если они движутся быстрее света, то, в соответствии с теорией Эйнштейна, они должны вести себя так, словно движутся из будущего в прошлое!
У Фейнмана хватило храбрости, чтобы серьезно рассмотреть эту безумную на первый взгляд возможность и изучить, что из нее следует. Он начертил следующую схему движения электрона, который периодически разгоняется до сверхсветовой скорости.
Он понял, что, согласно теории относительности, другой наблюдатель мог бы сделать альтернативные измерения и у него получилось бы нечто вроде нижеприведенного графика, где электрон движется сначала вперед во времени, потом назад, а потом снова вперед.
Однако отрицательный заряд, движущийся обратно во времени, математически эквивалентен положительному заряду, который движется во времени вперед! Таким образом, теория относительности требует существования положительно заряженных частиц с той же массой и всеми другими качествами, что и у электрона.
В таком случае второй чертеж Фейнмана можно понимать следующим образом: одинокий электрон движется себе вперед, а потом в другой точке пространства из ничего возникает пара «позитрон-электрон», и позитрон встречается с первым электроном, после чего они аннигилируют. Остается одинокий электрон, который движется вперед.
Если вас это не взволновало, задумайтесь вот над чем: ситуация начинается с одной частицы и заканчивается одной частицей, но где-то в промежутке некоторое время существует три движущиеся частицы.
Где-то в середине процесса, пусть совсем недолго, но все же существует нечто, порожденное из ничего!
В своей статье 1949 г. «Теория позитронов» Фейнман приводит прекрасную аналогию из реальности военного времени:
Здесь дело обстоит так же, как в том случае, когда летящий низко над дорогой пилот видит некоторое время вместо одной дороги три, хотя на самом деле имеется только двойной поворот одной и той же дороги[17].
Если время, за которое происходят эти «американские горки», достаточно мало и мы не можем измерить параметры частиц непосредственно, квантовая механика и теория относительности не просто допускают такое дикое положение дел – они его требуют. Частицы, появляющиеся и исчезающие за такие короткие промежутки времени, что их невозможно измерить, называются
Разумеется, рассуждения о совершенно новом наборе частиц в пустом пространстве, которые еще и невозможно зарегистрировать, выглядят примерно как предположение, что на кончике иглы танцует великое множество ангелов. И идея эта была бы настолько же бесплодной, если бы эти частицы не порождали никаких других измеримых эффектов. Но, хотя прямо такие частицы пронаблюдать невозможно, оказывается, что их косвенное воздействие обеспечивает большинство характеристик Вселенной, которую мы сейчас наблюдаем. Мало того, действие этих частиц может быть рассчитано с большей точностью, чем получается при любом другом вычислении в науке!
Рассмотрим, к примеру, атом водорода – систему, ради объяснения которой Бор разрабатывал квантовую теорию, а Шрёдингер выводил свое знаменитое уравнение. Красота квантовой механики состоит в том, что она могла объяснить возникновение специфических цветов света, который водород излучает при нагреве, на основании того, что электроны, вращающиеся вокруг протона, могут существовать только на дискретных энергетических уровнях, а когда они перескакивают с уровня на уровень, то поглощают или испускают лишь фиксированный набор световых частот. Уравнение Шрёдингера позволяет вычислить эти частоты и получить почти в точности верный ответ.
Почти, но не в точности.
Когда спектр водорода исследовали более тщательно, оказалось, что он сложнее, чем считалось ранее, и между наблюдаемыми уровнями есть еще дополнительные мелкие расщепления, это называется