Читаем Вспомогательные исторические дисциплины полностью

Итак, вруцелето данного года — это буква, на которую приходится воскресенье. Каждый год вруцелето изменяется, переходя на следующую букву (в високосном году через букву). Установленный выше порядок перемещения чисел месяца по дням недели (круги солнца), приложим и к смене вруцелет, поэтому определенному кругу солнца соответствует свое вруцелето. Это соответствие легко устанавливается с помощью специальных таблиц.


Определение дней недели по формулам. В источниках часто имеются указания на день, когда произошло то или иное событие. Это дает дополнительную возможность для проверки указанной в источнике даты. Существует несколько математических формул для определения дня недели.

Формула выдающегося русского астронома академика Д.М. Перевощикова: Хравен остатку от деления выражения [(Н — 1) + + 1/4(Н — 1) + — 1)]:7, где

X— порядковый номер дня недели, считая с воскресенья (воскресенье — 1, понедельник — 2 и т. д., суббота — 0);

Н— число года по эре от Рождества Христова;

Т— число дней от начала года по искомый день включительно.

Пример.Революция 1905 г. началась 9 января в воскресенье. Подставив в формулу соответствующие цифровые данные, мы должны получить Х = 1. Проверим это: Х = [(1905 — 1) + 1/4(1905 — 1) + + (9–1)]:7 = [1904 + 476 + 8]:7 = 2388:7 = 341 и 1 в остатке.

Формула слависта и филолога академика Е.Ф. Карского: Хравен остатку от деления выражения [Н + 1/4(Н — 1) + (Т + 5)]:7. Значения Хи букв в этой формуле такие же, как и в предыдущей.

Определим значение Хпо этой формуле для той же даты 9 января 1905 г. Х = [1905 + 1/4 (1905 — 1) + (9 + 5)]:7 = 2395:7 = 342 и 1 в остатке.

Формула Н.И. Черухина: Хравен остатку от деления выражения [(5хН):4 + М+ Т]:7, где

Х— порядковый номер дня недели, считая с понедельника (понедельник — 1, вторник — 2 и т. д., воскресенье — 0);

Н— число данного года по эре от Рождества Христова;

М— цифра данного месяца (эти цифры для простого года, начиная с января, следующие — 4, 0, 0, 3, 5, 1, 3, 6, 2, 2, 4, 0, 2; для високосного года, начиная с января, — 3, 6, 0, 3, 5, 1, 3, 6, 2, 4, 0, 2);

Т— указанное число месяца.

Проверим эту формулу на том же примере. По этой формуле остатка от деления быть не должно. Х= [(5х1905): 4 + 4 + 9]: 7 = = [(9525: 4) + 13]: 7 = (2381 + 13): 7 = 2394: 7 = 342. Остатка нет.

Все эти формулы позволяют определить день недели только по современной эре и для январского года Юлианского календаря (по старому стилю).

Историк Н.Г. Бережков вывел универсальную формулу для определения дня недели по эре от сотворения мира и по эре от Рождества Христова как для январского, так и для сентябрьского, мартовского и ультрамартовского годов. По этой формуле Хравен остатку от деления следующего выражения: Х= [Н + 1/4(Н — Р)+ Т+ r]: 7, где

Х — порядковый номер искомого дня недели, считая с воскресенья (воскресенье — 1, понедельник — 2 и т. д., суббота — 0);

Н— цифровое обозначение года;

Т— число дней от начала года по искомый день включительно;

Р— 0 в мартовском году, 1 — в январском, сентябрьском и ультрамартовских годах;

r— 3 в ультрамартовском году, 4 — в мартовском, 5 — в сентябрьском и январском годах.

По этой формуле в нашем примере (9 января 1905 г.) остаток должен быть равен 1. Подставим в эту формулу соответствующие цифровые значения: Х = [1905 + 1/4(1905 — 1) + 9 + 5]: 7 = (1905 + 476 + + 9 + 5): 7 = 2395:7 = 342 и 1 в остатке.

По формулам Д.М. Перевощикова, Е.Ф. Карского и Н.Г. Бережкова можно определить день недели и по Григорианскому календарю, но значения Хв этом случае будут другие: понедельник — 1, вторник — 2 и т. д., воскресенье — 0.

Установление дат по праздникам церковного календаря. В исторических источниках нередко вместо точной даты имеются указания на церковный праздник, приходящийся на событие, о котором идет речь. Русские церковные праздники делятся на две группы: подвижные (переходящие) и неподвижные (непереходящие). Подвижные праздники не имеют постоянной фиксированной даты и приходятся из года в год на разные числа календаря. Неподвижные праздники отмечаются в одни и те же числа месяца. Из неподвижных в источниках часто можно встретить следующие: Крещение — 6 января, Сретение — 2 февраля, Благовещение Пресвятой Богородицы — 25 марта, Юрьев день весенний — 23 апреля, Николин день весенний — 9 мая, Ильин день — 20 июля, Преображение Господне — 6 августа, Успение Пресвятой Богородицы (Госпожин день) — 15 августа, Семенов день, или «летопроводца», — 1 сентября, Рождество Пресвятой Богородицы — 8 сентября, Введение во храм Пресвятой Богородицы — 21 ноября, Юрьев день осенний — 26 ноября, Николин день осенний — 6 декабря, Рождество Христово — 25 декабря и др. Все даты здесь приведены по Юлианскому календарю.

Встречаются в источниках и указания на определенные посты («говейно», «говение»), например Успенский Пост (с 1 по 15 августа), Филиппов, или Рождественский, Пост (с 15 ноября по 25 декабря).

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже