Читаем Встраиваемые системы. Проектирование приложений на микроконтроллерах семейства 68HC12/HCS12 с применением языка С полностью

//delay(void): создает задержку

//********************************************************************

void delay(void) {

 int j;

 for(j=0x0000; j0x1000; j=j+0x01) {

  asm("nop");

 }

}

//********************************************************************

<p>7.2.7. Испытания устройства</p>

До подсоединения компонентов системы к МК 68HC12, мы должны полностью проверить схему. В главе 5 мы рассматривали методики проверки, позволяющие моделировать входы системы переключателями, а выходы светодиодами. Наше устройство уже содержит переключатели и светодиоды для такой проверки. Однако, как мы проверим аналоговые сигналы? Имеется два метода, позволяющих легко проверить связь друг с другом сигналов на каналах X и Y:

1) использование перьевого X-Y графопостроителя,

2) использование классической контрольно-измерительной методики, связанной с получением так называемых фигур Лиссажу.

При первой методике, выходной аналоговый сигнал, формируемый X-каналом ЦАП, переключается с X-канала гальванометра на X-канал перьевого X-Y графопостроителя, а сигнал с Y-канала гальванометра на Y-канал на графопостроителя. Сигнал управления затвором может быть подан на драйвер пера графопостроителя, смещающийся вверх и вниз. Необходим плоттер со специальными характеристиками, чтобы определить, требуется ли схема интерфейса между ТТЛ совместимым сигналом для управления затвором от 68HC12 и управления движением пера вверх и вниз. После подключения микроконтроллера 68HC12 к графопостроителю, каждое из изображений может быть полностью проверено.

Вторая методика испытаний использует классический метод фигур Лиссажу. Чтобы получить фигуры Лиссажу, выходные сигналы с X-канала и Y-канала ЦАП подаются на соответствующие каналы осциллографа.

После подключения 68HC12 к осциллографу, каждое из изображений также может быть полностью проверено. Дополнительную информация о фигурах Лиссажу можно найти в [2].

<p>7.2.8. Заключительные испытания системы управления</p>

После полной проверки программного обеспечения, оно может быть испытано совместно с устройством управления лазером. Реальные устройства описываются в литературе, выпускаемой изготовителями оптических устройств и в учебниках, посвященных оптическим блокам [3, 8].

<p>7.3. Цифровой вольтметр </p><p>7.3.1. Описание проекта </p>

Для этого проекта мы должны разработать цифровой вольтметр (ЦВ), способный измерять входной аналоговый сигнал в диапазоне от +10 до –10 В. Измеряемое напряжение, отображается на ЖК дисплее, число знакомест которого позволяет отображать числа от 0 до 100.

Диапазон входных измеряемых напряжений для модуля аналого-цифрового преобразования ATD МК 68HC12 составляет 0…5 В. Чтобы измерить входное напряжение в более широком диапазоне, необходим внешний интерфейс. Поэтому мы преобразуем входной сигнал ±10 В в сигнал, лежащий в диапазоне от 0 до 5 В. 

<p>7.3.2. Системы 68HC12 используемые в проекте </p>

Для реализации проекта мы должны будем использовать следующие модули в составе МК 68HC12, внешние устройства и программы управления:

• Модуль ATD в составе МК 68HC12;

• Символьный ЖК индикатор;

• Интерфейс преобразователя диапазона входного сигнала;

• Алгоритм преобразования измеряемого напряжения в ASCII код для отображения на ЖК индикаторе.

Прежде чем разрабатывать программное обеспечение, рассмотрим некоторые аппаратные решения.

<p>7.3.3. Расчет интерфейса модуля ATD</p>

В разделе 5.9 мы описали, как подключить аналоговое устройство ввода данных к МК 68HC12, использовав методику расчета интерфейса преобразователя. Мы можем применить этот материал для разработки устройства, изменяющего диапазон входного напряжения от исходного ±10 В до диапазона от 0 до 5 В, совместимого с подсистемой аналого-цифрового преобразования для 68HC12.

Структурная схема согласующего устройства приводится на рис. 7.13. Это устройство должно сформировать напряжение 5 В на входе АЦП микроконтроллера, когда на вход вольтметра подается 10 В, и 0 В на входе АЦП при напряжении в –10 В на входе вольтметра. Чтобы выполнить такое преобразование, входной сигнал должен быть умножен на масштабирующий коэффициент, и, кроме того, должно быть создано напряжение смещения. В нашей схеме операцию масштабирования выполняет блок K, и его выходной сигнал суммируется с сигналом смещения B.

Рис. 7.13. К расчету согласующего устройства

По рассмотренной ранее методике составим два уравнения с двумя неизвестными, чтобы описать работу интерфейса преобразователя нашего проекта:

V2max = V2min * K + B

V1max = V1min * K + B

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже