В видеофильме, показанном на SIGGRAPH-2011
, демонстратор поднимал Kinect и водил им вдоль стен типичного кабинета – со стульями, растением в горшке, настольным компьютером и монитором.[86] В ходе этого процесса видео разделялось на несколько экранов, на которых было показано все, что способен почувствовать Kinect. Сразу же становится ясно, что если Kinect и не полностью решает проблему SLAM для комнаты, то достаточно близок к этому. В режиме реального времени Kinect создает трехмерную карту комнаты и всех объектов в ней, включая сотрудников. Он распознает слово DELL, выдавленное в пластике на задней панели компьютерного монитора, хотя эти буквы не раскрашены и имеют глубину всего 1 мм. Устройство знает, где именно в комнате оно находится, и даже способно рассчитать, как будут отскакивать виртуальные шарики для пинг-понга, если их бросить в комнату сверху. В статье технологического блога Engadget, написанной после проведения SIGGRAPH, говорилось: «Kinect сделал трехмерное восприятие достоянием мейнстрима и более того: из обычного потребительского продукта сотворили нечто такое, от чего просто крышу срывает».[87]В июне 2011 года, незадолго до SIGGRAPH, Microsoft
выпустила комплект разработки программного обеспечения для Kinect, дав разработчикам все необходимое, чтобы они могли писать программы под PC, с помощью которых можно было бы управлять устройством. После конференции возник огромный интерес к использованию Kinect для целей SLAM. Многие команды, занимавшиеся робототехникой и исследованиями искусственного интеллекта, загрузили себе SDK и принялись за работу.Менее чем через год команда ирландских и американских исследователей во главе с нашим коллегой Джоном Леонардом из лаборатории компьютерных наук и искусственного интеллекта МТИ анонсировала Kintinuous
– «пространственно расширенную» версию Kinect. С помощью Kintinuous пользователи могли использовать Kinect для маппинга крупных объектов, например домов и даже улиц и площадей (которые команда сканировала, высовывая Kinect из открытого окна машины во время ночных поездок по городу). В конце статьи, описывающей их работу, создатели Kintinuous обещали: «В будущем мы расширим систему, чтобы она могла в полной мере осуществлять SLAM-подход».[88] Мы думаем, что нам не придется долго ждать очередного известия об успехе от этой группы. В руках способных инженеров экспоненциальная сила закона Мура со временем позволяет решать самые сложные проблемы.Некоторые из технологий, которых мы касались в предыдущей главе, используют недорогие и мощные цифровые сенсоры. Так, у робота Baxter
есть несколько цифровых камер и датчиков силы и положения. Совсем недавно все эти устройства были чудовищно дорогими, неуклюжими и неточными. Беспилотный автомобиль Google тоже использует несколько сенсорных технологий, однако самый важный из его «глаз» – устройство под названием LIDAR (от слов light («свет») и radar), размещенное на крыше машины. Этот прибор, разработанный компанией Velodyne, содержит 64 отдельных лазерных луча и такое же количество детекторов, заключенных в корпус, совершающий 10 оборотов в секунду. Устройство ежесекундно генерирует около 1,3 миллиона единиц данных, а бортовые компьютеры превращают их в трехмерную картинку в режиме реального времени, покрывающую до 100 метров во всех направлениях. Ранние коммерческие системы LIDAR, появившиеся на рынке около 2000 года, стоили до 35 миллионов долларов, однако в середине 2013 года появилось устройство Velodyne для беспилотной автомобильной навигации стоимостью около 80 000 долларов, и ожидается, что цена будет снижаться и дальше. Дэвид Холл, основатель и исполнительный директор компании, полагает, что массовое производство позволит цене продукта «сократиться до цены видеокамеры – то есть нескольких сотен долларов».[89]Все эти примеры иллюстрируют первое из трех звеньев нашего объяснения, почему мы находимся во второй эре машин: устойчивый экспоненциальный рост позволил нам оказаться на второй половине шахматной доски – в эпохе, когда происходившее в прошлом больше не может служить надежным предиктором того, что случится дальше. Накопленное удвоение, описанное законом Мура (и этот процесс пока продолжается), привело нас в мир, где мощностью очередного суперкомпьютера всего через несколько лет после его появления обладает игрушка, где постоянно дешевеющие сенсоры позволяют экономично решать еще вчера неразрешимые задачи и где научная фантастика продолжает претворяться в реальность.
Иногда разница в количестве (то есть большее количество того же самого) превращается в качественные различия (появляется нечто, чего не было раньше). История второй половины шахматной доски напоминает нам о том, что экспоненциальный прогресс может привести нас в удивительные места. А множество недавних примеров убеждает в том, что мы уже там.