Как германиевый, так и кремниевый диоды могут быть повреждены чрезмерным нагреванием или высоким обратным напряжением. Производители указывают максимальный прямой ток (IF max), который может безопасно течь через диод. Они также указывают максимальное обратное напряжение (пиковое обратное напряжение). Если превысить пиковое обратное напряжение, то через диод потечет большой обратный ток, создающий избыточный нагрев и повреждающий диод.
При комнатной температуре обратный ток мал. При повышении температуры обратный ток увеличивается, нарушая работу диода. В германиевых диодах обратный ток выше, чем в кремниевых диодах, удваивается при повышении температуры приблизительно на 10 градусов Цельсия.
Схематическое обозначение диода показано на рис. 20-5.
Рис. 20-5.Схематическое обозначение диода.
P-часть представлена стрелкой, а n-часть — чертой. Прямой ток[2] течет от части n к части р (против стрелки).
Часть n называется катодом, а часть р — анодом. Катод поставляет, а анод собирает электроны.
На рис. 20-6 показано включение диода, смещенного в прямом направлении. Отрицательный вывод источника тока подсоединен к катоду. Положительный вывод подсоединен к аноду. Это позволяет току течь в прямом направлении. Резистор (Rs) включен последовательно с диодом для ограничения прямого тока до безопасного значения.
Рис. 20-6.Цепь с диодом, смещенным в прямом направлении.
На рис. 20-7 показано включение диода, смещенного в обратном направлении. Отрицательный вывод источника тока подсоединен к аноду. Положительный вывод подсоединен к катоду. Через диод, смещенный в обратном направлении течет малый обратный ток (IR).
Рис. 20-7.Цепь с диодом, смещенным в обратном направлении.
20-3. Вопросы
1. Какие проблемы может создать обратный ток в германиевом или кремниевом диоде?
2. Нарисуйте схематическое обозначение диода и обозначьте выводы.
3. Нарисуйте цепь с диодом, смещенным в прямом направлении.
4. Нарисуйте цепь с диодом, смещенным в обратном направлении.
5. Почему в цепь с диодом, смещенным в прямом направлении, должен быть включен резистор?
20-4. МЕТОДЫ ИЗГОТОВЛЕНИЯ ДИОДОВР-n переход диода может быть одного из трех типов: выращенный переход, вплавленный переход или диффузионный переход. Методы изготовления каждого из этих переходов различны.
Метод выращивания перехода (наиболее ранний) состоит в следующем: чистый полупроводниковый материал и примеси р-типа помещаются в кварцевый контейнер и нагреваются до тех пор, пока они не расплавятся. Малый полупроводниковый кристалл, называемый затравкой, помещается в расплавленную смесь. Затравочный кристалл медленно вращается и достаточно медленно вытягивается из расплава, чтобы на нем успел нарасти слой расплавленной смеси. Расплавленная смесь, нарастая на затравочный кристалл, охлаждается и затвердевает. Она имеет такую же кристаллическую структуру, как и затравка. После вытягивания затравка оказывается попеременно легированной примесями n- и р- типов. Легирование — это процесс добавления примесей в чистые полупроводниковые кристаллы для увеличения количества свободных электронов или дырок. Это создает в выращенном кристалле слои n- и р-типов. Таким образом, выращенный кристалл состоит из многих р-n слоев.
Метод создания вплавленного р-n перехода предельно прост. Маленькая гранула трехвалентного материала, такого как индий, размещается на кристалле полупроводника n-типа. Гранула и кристалл нагреваются до тех пор, пока гранула не расплавится сама и частично не расплавит полупроводниковый кристалл. На участке соединения двух материалов образуется материал р-типа. После охлаждения материал перекристаллизовывается и образуется твердый р-n переход.
Диффузионный метод получения р-n перехода наиболее широко используется в настоящее время. Маска с прорезями размещается над тонким срезом полупроводника р-и n-типа, который называется подложкой. После этого подложка помещается в печь и подвергается контакту с примесями, находящимися в газообразном состоянии. При высокой температуре атомы примеси проникают или диффундируют через поверхность подложки. Глубина проникновения контролируется длительностью экспозиции и величиной температуры.
После того, как р-n переход создан, диод должен быть помещен в корпус для того, чтобы защитить его от влияния окружающей среды и механических повреждений. Корпус должен также обеспечить возможность соединения диода с цепью. Вид корпуса определяется назначением или способом применения диода (рис. 20-8).