Читаем Введение в логику и научный метод полностью

С какой стороны подступиться к этому доказательству? Если читатель является современным и эмпирически ориентированным человеком, то ему может показаться, что для достижения поставленной задачи необходимо только провести несколько точных измерений веса тел в воде и без воды, подвесив их к пружинным весам. Однако Архимед был слишком мудрым ученым и хорошо знал требования доказательства, чтобы сделать нечто подобное. Во-первых, подтверждение суждения посредством измерения всегда будет лишь приблизительным. Ни одно из двух измерений не укажет в точности на одну и ту же потерю в весе и не укажет, что потеря веса в точности равна весу вытесненной воды. Во-вторых, никакое число измерений не сможет показать, что данное суждение будет истинным для всех возможных случаев, т. е. для тех случаев, которые имели место в прошлом и всех тех случаев, когда тело будет падать в воду в будущем. Как можно, имея свидетельства частных измерений, быть уверенным в том, что если твердое тело больше определенного размера или если количество воды увеличено в достаточной мере, то отношение, утверждаемое в указанном суждении, все равно будет иметь место? Читатель согласится, что метод экспериментального подтверждения не может гарантировать невозможности исключений.

Так как же в таком случае Архимеду удалось доказать данное суждение? К счастью, доказательство, которое он посчитал адекватным, присутствует в сохранившихся отрывках его трактата «О плавающих телах». На протяжении веков данное доказательство служило моделью того, каким должно быть доказательство. Также оно смогло вдохновить таких людей, как Кеплер и Галилей. Доказательство состоит из проявления необходимых отношений между природой, или определением, жидкостей и природой поведения твердых тел, погруженных в жидкости. Рассмотрим его более детально, чтобы открыть для себя важнейшие свойства дедуктивного рассуждения.

Архимед начинает свой трактат с постулата, или допущения, с помощью которого определяется природа жидкостей. Затем он доказывает шесть суждений посредством данного постулата и геометрических теорем, которые были ранее доказаны в соответствующих трактатах по данному предмету. Однако для того чтобы доказать седьмое суждение, нужен только исходный постулат и два предшествующих суждения. Мы просто их приведем, а затем повторим доказательство седьмой теоремы. (Здесь мы не будем использовать кавычки и в некоторых местах внесем нужные сокращения.)

Сам постулат выглядит так: допустим, что жидкость имеет такую природу, что во всех одинаковых и непрерывных положениях ее частей то количество (portion), которое претерпевает наименьшее давление, вытесняется тем количеством, которое претерпевает наибольшее давление. И каждая часть жидкости испытывает давление того количества жидкости, которое находится перпендикулярно над ней, если последнее погружается вниз или испытывает давление от другого количества.

Суждение 3. Твердые тела, которые обладают такой же плотностью, что и жидкость, будучи погруженными в нее, не будут плавать на поверхности, но и не потонут.

Суждение 6. Если твердое тело, более легкое, чем жидкость, погрузить в воду, то оно будет вытолкнуто вверх силой, равной разнице между весом тела и весом вытесненной жидкости.

Суждение 7 и его доказательство таковы: твердое тело, более плотное, чем жидкость, при погружении в эту жидкость опустится на дно жидкости; будучи взвешенным в жидкости, твердое тело будет легче своего истинного веса ровно на столько, сколько весила вытесненная им жидкость.

Доказательство. 1. Первая часть суждения очевидна, поскольку часть жидкости, находящаяся непосредственно под твердым телом, будет испытывать большее давление, чем части жидкости, находящиеся под этой частью; и, следовательно, эти другие части будут поддаваться до тех пор, пока твердое тело не достигнет дна.

2. Пусть А будет твердым телом, более тяжелым, чем такой же объем жидкости, и пусть (G + Н) представляют его вес так, что G представляет вес такого же объема жидкости.

Возьмем твердое тело В, более легкое, чем такой же объем жидкости, и такое, что вес В равен G, тогда как вес такого же объема жидкости равен (G + Н). (Иными словами, В следует выбрать таким образом, чтобы его объем равнялся такому объему жидкости, который будет равен по весу телу А.)

Пусть далее А и В будут совмещены в единое твердое тело и погружены в жидкость. Тогда поскольку (А + В) будет иметь такой же вес, как и такой же объем жидкости, а оба веса будут равны (G + Н) + G, то из этого следует, что (А + В) в жидкости останется неподвижным.

Следовательно, сила, которая заставляет А тонуть, должна быть равной силе, выталкивающей В вверх. Эта последняя равна разнице между (G + Н) и G. Поэтому А вдавливается силой, равной Н, т. е. его вес в жидкости равен Н или разнице между (G + Н) и G.

Читателю следует изучить данное доказательство тщательно и неоднократно. После этого он может задуматься над следующими вопросами:

Перейти на страницу:

Похожие книги

Молодой Маркс
Молодой Маркс

Удостоена Государственной премии СССР за 1983 год в составе цикла исследований формирования и развития философского учения К. Маркса.* * *Книга доктора философских наук Н.И. Лапина знакомит читателя с жизнью и творчеством молодого Маркса, рассказывает о развитии его мировоззрения от идеализма к материализму и от революционного демократизма к коммунизму. Раскрывая сложную духовную эволюцию Маркса, автор показывает, что основным ее стимулом были связь теоретических взглядов мыслителя с политической практикой, соединение критики старого мира с борьбой за его переустройство. В этой связи освещаются и вопросы идейной борьбы вокруг наследия молодого Маркса.Третье издание книги (второе выходило в 1976 г. и удостоено Государственной премии СССР) дополнено материалами, учитывающими новые публикации произведений основоположников марксизма.Книга рассчитана на всех, кто изучает марксистско-ленинскую философию.

Николай Иванович Лапин

Философия
Социология искусства. Хрестоматия
Социология искусства. Хрестоматия

Хрестоматия является приложением к учебному пособию «Эстетика и теория искусства ХХ века». Структура хрестоматии состоит из трех разделов. Первый составлен из текстов, которые являются репрезентативными для традиционного в эстетической и теоретической мысли направления – философии искусства. Второй раздел представляет теоретические концепции искусства, возникшие в границах смежных с эстетикой и искусствознанием дисциплин. Для третьего раздела отобраны работы по теории искусства, позволяющие представить, как она развивалась не только в границах философии и эксплицитной эстетики, но и в границах искусствознания.Хрестоматия, как и учебное пособие под тем же названием, предназначена для студентов различных специальностей гуманитарного профиля.

Владимир Сергеевич Жидков , В. С. Жидков , Коллектив авторов , Т. А. Клявина , Татьяна Алексеевна Клявина

Культурология / Философия / Образование и наука