Читаем «Вы, конечно, шутите, мистер Фейнман!» полностью

Как только мы выходим из бара, появляется Энн, бежит через шоссе и подходит ко мне. Она берет меня за руку и говорит: «Пойдем ко мне».

Конферансье был прав. Урок оказался замечательный!

Когда осенью я вернулся в Корнелл, на одной из вечеринок я танцевал с сестрой одного аспиранта, которая приехала из Вирджинии. Она была очень милой, и мне в голову пришла одна идея. «Пойдем в бар, выпьем что-нибудь», – предложил я.

По пути в бар я набирался храбрости, чтобы проверить урок, который преподал мне конферансье, на обыкновенной девушке. Как-никак, в том, что ты неуважительно относишься к девушке из бара, которая старается раскрутить тебя на выпивку, нет ничего особенного, а вот как насчет милой, обыкновенной девушки с Юга?

Мы вошли в бар и, прежде чем сесть за столик, я сказал: «Послушай, прежде чем я куплю тебе выпить, я хочу знать одну вещь: ты переспишь со мной сегодня ночью?»

«Да».

Итак, тактика сработала даже с обычной девушкой! Однако, несмотря на всю эффективность урока, больше я им не пользовался. Мне не нравилось так вести себя. Но все же мне было интересно узнать, что мир устроен иначе, чем меня учили в детстве.

Счастливые числа

Однажды в Принстоне я сидел в комнате отдыха и случайно услышал, как математики говорят о ряде для ex, который выглядит как 1 + x + x2/2! + x3/3! + … Каждый последующий член ряда получается при умножении предыдущего члена на x и его делении на следующее порядковое число. Например, чтобы получить член, следующий за x4/4!, нужно умножить этот член на x и разделить на 5. Все очень просто.

Когда я был ребенком, я просто восхищался рядами и нередко забавлялся с ними. С помощью ряда, о котором шла речь, я вычислял e и видел, как быстро уменьшаются последующие члены.

Я пробормотал что-то вроде того, как легко можно вычислить любую степень e с помощью этого ряда (достаточно просто подставить эту степень вместо x).

– Да? – сказали они. «Отлично, чему равно e в степени 3,3?» – спросил какой-то шутник. По-моему, это был Таки.

Я говорю: «Легко. 27,11».

Таки знает, что вычислить это в уме совсем нелегко. «Эй! Как тебе это удалось?»

Другой парень говорит: «Ну вы же знаете Фейнмана, он просто выдумал это число. На самом деле оно неправильное».

Они идут за таблицей, а я тем временем добавляю еще несколько цифр. «27,1126», – говорю я.

Они находят число в таблице. «Правильно! Но как ты это сделал?»

– Я просто суммировал ряд.

– Никто не умеет суммировать ряды так быстро. Ты, видимо, просто знал это число. А чему равно e в степени 3?

– Слушайте, – говорю я. – Это сложная работа! Я могу посчитать только одну степень в день!

– Ага! Это надувательство! – обрадовались они.

– О'кей, – говорю я. – 20,085.

Пока они ищут число в книжке, я добавляю еще несколько цифр. Теперь они возбуждаются, потому что я правильно назвал еще одно число.

Итак, все великие математики современности озадачены тем, как мне удается подсчитать любую степень e! Один из них говорит: «Не может быть, чтобы он просто подставлял это число и суммировал ряд – это слишком сложно. Тут есть какой-то трюк. Ты не сможешь вычислить какое угодно число, например, e в степени 1,4».

Я говорю: «Да, работа не из легких. Но для вас, так и быть. 4,05».

Пока они ищут ответ, я добавляю еще несколько цифр и говорю: «Все, на сегодня это последнее», и выхожу из комнаты.

Произошло же следующее. Я случайно знал три числа: натуральный логарифм 10 (который нужен, чтобы переводить числа от основания 10 к основанию e), который равен 2,3026 (поэтому я знал, что e в степени 2,3 примерно равно 10), а из-за радиоактивности (средняя продолжительность жизни и период полураспада) я знал натуральный логарифм 2, который равен 0,69315 (поэтому я также знал, что e в степени 0,7 равно почти 2). Кроме того, я знал, что e (в степени 1) равно 2,71828.

Сначала меня попросили возвести e в степень 3,3. Это все равно, что e в степени 2,3 (то есть 10), умноженное на e, то есть 27,18. Пока они старались понять, как мне это удалось, я внес поправку на лишние 0,0026: 2,3026 – слегка завышенное число.

Я знал, что не смогу вычислить следующее число. Мне просто повезло, когда парень назвал e в степени 3: это e в степени 2,3, умноженное на e в степени 0,7 (или 10, умноженное на 2). Итак, я знал, что это 20 с чем-то, а пока они раздумывали над тем, как мне это удалось, я внес поправку на 0,693.

Ну уж теперь-то я был уверен, что не смогу вычислить следующее число, но мне опять повезло. Парень попросил посчитать е в степени 1,4, а это e в степени 0,7, умноженное на само себя. Так что все, что мне пришлось сделать, так это чуть-чуть подкорректировать четверку!

Они так никогда и не поняли, как мне это удалось.

Когда я был в Лос-Аламосе, я обнаружил, что Ханс Бете умеет превосходно считать. Например, как-то раз мы подставляли числа в формулу и дошли до возведения в квадрат числа 48. Я потянулся за калькулятором Маршан, он же сказал: «Это 2300». Я начинаю нажимать кнопки, а он говорит: «Если тебе нужно знать точно, то ответ 2304».

Машина говорит 2304. «Класс! Это же просто здорово!» – говорю я.

Перейти на страницу:

Похожие книги

Айвазовский
Айвазовский

Иван Константинович Айвазовский — всемирно известный маринист, представитель «золотого века» отечественной культуры, один из немногих художников России, снискавший громкую мировую славу. Автор около шести тысяч произведений, участник более ста двадцати выставок, кавалер многих российских и иностранных орденов, он находил время и для обширной общественной, просветительской, благотворительной деятельности. Путешествия по странам Западной Европы, поездки в Турцию и на Кавказ стали важными вехами его творческого пути, но все же вдохновение он черпал прежде всего в родной Феодосии. Творческие замыслы, вдохновение, душевный отдых и стремление к новым свершениям даровало ему Черное море, которому он посвятил свой талант. Две стихии — морская и живописная — воспринимались им нераздельно, как неизменный исток творчества, сопутствовали его жизненному пути, его разочарованиям и успехам, бурям и штилям, сопровождая стремление истинного художника — служить Искусству и Отечеству.

Екатерина Александровна Скоробогачева , Екатерина Скоробогачева , Лев Арнольдович Вагнер , Надежда Семеновна Григорович , Юлия Игоревна Андреева

Биографии и Мемуары / Искусство и Дизайн / Документальное