Гравитационный радиус (горизонт событий) – граница черной дыры. Черные дыры были предсказаны как объекты, у которых вторая космическая скорость больше или равна скорости света, т. е. в ньютоновской теории объект, имеющий начальную скорость, равную скорости света, не может покинуть поверхность. Из этого простого условия легко получить характерный, т. н. гравитационный, радиус. К примеру, для массы Солнца, 2×1033г, получаем оценку гравитационного радиуса порядка трех километров. В ньютоновской теории такой результат может быть получен только формально, так как в ней могут существовать движения со скоростями выше скорости света. Реально черные дыры были предсказаны в общей теории относительности Эйнштейна, однако формула для гравитационного радиуса в обеих теориях оказалась одной и той же. Как видно из формулы, черную дыру можно получить или сильно сжав объект при неизменной массе (например, наше Солнце до 3 км), или существенно увеличив его массу при постоянном радиусе. «Звездные» черные дыры образуются путем сжатия, когда массивная звезда, исчерпав источники энергии, падает «сама в себя». Давление не может противодействовать силам гравитации, и они схлопывают звезду, исчерпавшую источники энергии.
Квантовая механика – теория на основании квантового принципа Планка о том, что свет (или любые другие классические волны) может испускаться и поглощаться только дискретными порциями (квантами), энергия которых пропорциональна длине волны. Устанавливает способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов) а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми в макроскопических опытах.
Квантовая гравитация – квантовая механика и гравитационная теория в рамках общей теории относительности очень плохо стыкуются между собой.
С практической точки зрения нам в повседневной жизни квантовая теория гравитационного взаимодействия, по большому счету, не нужна, поскольку все явления, с которыми мы прямо или косвенно сталкиваемся, описываются либо гравитационными эффектами, на фоне которых квантово-механические эффекты никак не проявляются, либо наоборот.
С другой стороны, если нас интересует происхождение Вселенной и процессы, происходившие в первые мгновения после Большого взрыва, универсальная и непротиворечивая теория нам все-таки нужна. В самом начале квантово-механические и гравитационные взаимодействия были в равной мере значимы. Именно это и послужило одной из главных мотивировок к разработке квантовой теории гравитации. Такой теорией стала теория струн. В ее рамках удалось, наконец, объединить квантово-механические и гравитационные взаимодействия. Мы не знаем, верна ли эта теория, но лучшей кандидатуры на роль универсальной сегодня не существует.
Кварки – фундаментальные (неделимые и бесструктурные с точки зрения современной физики) компоненты материи с дробным электрическим зарядом. Имеют по шесть различных разновидностей или «ароматов»: «верхний», «нижний», «странный», «очарованный», «красивый» и «истинный», обычно объединяются в пары или тройки, формируя другие элементарные частицы. Кварки скрепляются между собой за счет ядерных сил – сильных взаимодействий, переносчиками которых являются другие частицы – глюоны.
Керровская черная дыра – вращающийся коллапсар. Если исходное тело вращалось, то вокруг черной дыры сохраняется «вихревое» гравитационное поле, увлекающее все соседние тела во вращательное движение вокруг нее. Поле тяготения вращающейся черной дыры называют полем Керра (математик Рой Керр в 1963 нашел решение соответствующих уравнений). Этот эффект характерен не только для черной дыры, но для любого вращающегося тела, даже для Земли. По этой причине размещенный на искусственном спутнике Земли свободно вращающийся гироскоп испытывает медленную прецессию относительно далеких звезд. Вблизи Земли этот эффект едва заметен, но вблизи черной дыры он выражен гораздо сильнее: по скорости прецессии гироскопа можно измерить момент импульса черной дыры, хотя сама она не видна.
Космогония – наука, изучающая происхождение и развитие космических тел. В космогонические системы входят сценарии эволюции звезд, галактик, туманностей, Солнечной системы, включая все входящие в нее небесные тела: Солнце, планеты, их спутники, астероиды, кометы, метеориты. Изучение космогонических процессов является одной из главных задач астрофизики. В современной космогонии широко используются законы физики и химии. Космогонические гипотезы прошлых веков относились главным образом к происхождению Солнечной системы. Лишь в XX веке развитие наблюдательной и теоретической астрофизики позволило начать серьезное изучение эволюции звезд и звездных систем.