Существует даже специальная площадка под названием Algorithmia, где компании могут купить или заказать алгоритмы для анализа собираемых ими данных. Как и на GitHub (смотрите 7-ю главу), разработчики алгоритмов могут открыть код и предоставить другим возможность его улучшить.
Два типа алгоритмов находятся на переднем крае этого нового мира – алгоритмы машинного и глубинного обучения.
Под
За истекшие два года возможности глубинного обучения значительно возросли. Сегодня алгоритмы глубинного обучения не только используются для совершенствования систем распознавания речи, создания более эффективной поисковой системы (Рэй Курцвейл работает над этим в Google) и распознавания отдельных объектов; они также способны находить конкретные эпизоды на видео и составлять их текстовое описание, причем без вмешательства человека. Эти алгоритмы даже могут играть в видеоигры, обучаясь правилам игры, а затем оптимизируя свои игровые стратегии и тактики.
Подумайте о последствиях такого революционного прорыва. Технологии сделают большинство продуктов и услуг более эффективными, персонализированными и дешевыми. Но одновременно это приведет к кардинальному изменению множества профессий и даже к исчезновению многих из них.
Например, на сегодняшний день американская транспортно-логистическая компания UPS владеет флотом из 55 тысяч грузовых автомобилей, которые совершают 16 млн доставок в день. При таких объемах перевозок неэффективная маршрутизация может вести к весьма значительным издержкам. Благодаря применению телематики и алгоритмов компания помогает водителям экономить 85 млн миль в год, что уже сохранило ей 2,55 млрд долларов. Похожие технологии начинают широко использовать в сфере здравоохранения, энергетики и финансовых услуг, что означает, что мы вступаем в мир алгоритмов.
Еще в 2005 году предприниматель и издатель Тим О'Райли заявил, что «данные – это новый Intel Inside». И это когда в мире насчитывалось всего полмиллиарда подключенных к интернету устройств. Как уже говорилось в 1-й главе, с приходом интернета вещей их количество возрастет до триллиона устройств.
Перед лицом такого взрывного роста потребность в алгоритмах встает как нельзя более остро. Только задумайтесь на минуту: за последние два года было создано в девять раз больше данных, чем за всю предыдущую историю человечества. По прогнозам Computer Science Corporation, к 2020 году мы создадим 73,5 зеттабайт данных – выражаясь словами Стивена Хокинга, это семьдесят три с двадцатью одним нулем.