At any time during tracing, the rebalancer might be invoked to repopulate pages differently. These decisions are made by analyzing information such as the distribution of memory within working sets, the zero page list, the modified page list and the standby page lists, the number of faults, the state of PTE access bits, the per-page usage traces, current virtual address consumption, and working set size.
A given trace can be either a page access trace, in which the tracer keeps track (by using the access bit) of which pages were accessed by the process (both file page and private memory), or a name logging trace, which monitors the file-name-to-file-key-mapping updates (which allow Superfetch to map a page associated with a file object) to the actual file on disk.
Although a Superfetch trace only keeps track of page accesses, the Superfetch service processes this trace in user mode and goes much deeper, adding its own richer information such as where the page was loaded from (such as resident memory or a hard page fault), whether this was the initial access to that page, and what the rate of page access actually is. Additional information, such as the system state, is also kept, as well as information about in which recent scenarios each traced page was last referenced. The generated trace information is kept in memory through a logger into data structures, which identify, in the case of page access traces, a virtual-address-to-working-set pair or, in the case of a name logging trace, a file-to-offset pair. Superfetch can thus keep track of which range of virtual addresses for a given process have page-related events and which range of offsets for a given file have similar events.
Scenarios
One aspect of Superfetch that is distinct from its primary page repriorization and prefetching mechanisms (covered in more detail in the next section) is its support for scenarios, which are specific actions on the machine for which Superfetch strives to improve the user experience. These scenarios are standby and hibernation as well as fast user switching. Each of these scenarios has different goals, but all are centered around the main purpose of minimizing or removing hard faults.
For hibernation, the goal is to intelligently decide which pages are saved in the hibernation file other than the existing working set pages. The goal is to minimize the amount of time that it takes for the system to become responsive after a resume.
For standby, the goal is to completely remove hard faults after resume. Because a typical system can resume in less than 2 seconds, but can take 5 seconds to spin-up the hard drive after a long sleep, a single hard fault could cause such a delay in the resume cycle. Superfetch prioritizes pages needed after a standby to remove this chance.
For fast user switching, the goal is to keep an accurate priority and understanding of each user’s memory, so that switching to another user will cause the user’s session to be immediately usable, and not require a large amount of lag time to allow pages to be faulted in.
Scenarios are hardcoded, and Superfetch manages them through the
Each scenario is defined by a plan file, which contains, at minimum, a list of pages associated with the scenario. Page priority values are also assigned according to certain rules we’ll describe next. When a scenario starts, the scenario manager is responsible for responding to the event by generating the list of pages that should be brought into memory and at which priority.
Page Priority and Rebalancing
We’ve already seen that the memory manager implements a system of page priorities to define from which standby list pages will be repurposed for a given operation and in which list a given page will be inserted. This mechanism provides benefits when processes and threads can have associated priorities—such that a defragmenter process doesn’t pollute the standby page list and/or steal pages from an interactive, foreground process—but its real power is unleashed through Superfetch’s page prioritization schemes and rebalancing, which don’t require manual application input or hardcoded knowledge of process importance.