The first step the object manager takes is to translate \?? to the process’s per-session namespace directory that the DosDevicesDirectory
field of the device map structure in the process object references (which was propagated from the first process in the logon session by using the logon session references field in the logon session’s token). Only volume names for network shares and drive letters mapped by the Subst.exe utility are typically stored in the per-session directory, so on those systems when a name (C: in this example) is not present in the per-session directory, the object manager restarts its search in the directory referenced by the GlobalDosDevicesDirectory field of the device map associated with the per-session directory. The GlobalDosDevicesDirectory always points at the \Global?? directory, which is where Windows stores volume drive letters for local volumes. (See the section “Session Namespace” in Chapter 3 in Part 1 for more information.)The symbolic link for a volume drive letter points to a volume device object under \Device, so when the object manager encounters the volume object, the object manager hands the rest of the path name to the parse function that the I/O manager has registered for device objects, IopParseDevice
. (In volumes on dynamic disks, a symbolic link points to an intermediary symbolic link, which points to a volume device object.) Figure 12-11 shows how volume objects are accessed through the object manager namespace. The figure shows how the \GLOBAL??\C: symbolic link points to the \Device\HarddiskVolume1 volume device object.After locking the caller’s security context and obtaining security information from the caller’s token, IopParseDevice
creates an I/O request packet (IRP) of type IRP_MJ_CREATE, creates a file object that stores the name of the file being opened, follows the VPB of the volume device object to find the volume’s mounted file system device object, and uses IoCallDriver to pass the IRP to the file system driver that owns the file system device object.When an FSD receives an IRP_MJ_CREATE IRP, it looks up the specified file, performs security validation, and if the file exists and the user has permission to access the file in the way requested, returns a success status code. The object manager creates a handle for the file object in the process’s handle table, and the handle propagates back through the calling chain, finally reaching the application as a return parameter from CreateFile
. If the file system fails the create operation, the I/O manager deletes the file object it created for the file.We’ve skipped over the details of how the FSD locates the file being opened on the volume, but a ReadFile
function call operation shares many of the FSD’s interactions with the cache manager and storage driver. Both ReadFile and CreateFile are system calls that map to I/O manager functions, but the NtReadFile system service doesn’t need to perform a name lookup—it calls on the object manager to translate the handle passed from ReadFile into a file object pointer. If the handle indicates that the caller obtained permission to read the file when the file was opened, NtReadFile proceeds to create an IRP of type IRP_MJ_READ and sends it to the FSD for the volume on which the file resides. NtReadFile obtains the FSD’s device object, which is stored in the file object, and calls IoCallDriver, and the I/O manager locates the FSD from the device object and gives the IRP to the FSD.
Figure 12-11. Drive-letter name resolution
If the file being read can be cached (that is, the FILE_FLAG_NO_BUFFERING flag wasn’t passed to CreateFile
when the file was opened), the FSD checks to see whether caching has already been initiated for the file object. The PrivateCacheMap field in a file object points to a private cache map data structure (which we described in Chapter 11) if caching is initiated for a file object. If the FSD hasn’t initialized caching for the file object (which it does the first time a file object is read from or written to), the PrivateCacheMap field will be null. The FSD calls the cache manager’s CcInitializeCacheMap function to initialize caching, which involves the cache manager creating a private cache map and, if another file object referring to the same file hasn’t initiated caching, a shared cache map and a section object.