В современной богатой кислородом атмосфере солнечный свет расщепляет часть молекул кислорода (O2
), высвобождая отдельные атомы кислорода, которые затем объединяются с другими молекулами O2, образуя трехатомные молекулы озона (O3). Этот процесс создает озоновый слой в стратосфере, который действует как своеобразный солнцезащитный фильтр для нашей планеты, поскольку молекулы озона поглощают ультрафиолетовое излучение Солнца. Без кислорода в атмосфере не было бы и озона, и ультрафиолетовое излучение попадало бы на поверхность. Следовательно, если какая-то характеристика поверхности Земли может численно определять количество ультрафиолета, проникшего сквозь атмосферу, то она стала бы хорошим индикатором содержания кислорода в атмосфере.Изобретательные геохимики нашли такую характеристику: изотопы серы в пирите из океанических отложений. Как это связано с ультрафиолетовым излучением? Сера в форме газообразного диоксида серы, который выбрасывается из вулканов, в небольшом количестве входит в состав атмосферы. В геологических масштабах вулканический диоксид серы в атмосфере задерживается ненадолго: его смывает и переносит в океаны, и в конечном итоге он оказывается в отложениях. Но если он еще в атмосфере взаимодействует с ультрафиолетовым излучением большой мощности, то происходят химические реакции, которые оставляют уникальный изотопный отпечаток. Этот отпечаток сохранится даже тогда, когда сера попадает в океан и превращается в отложениях в сульфид серы — пирит. Поэтому этот минерал является четким сигналом, что ультрафиолет глубоко проникал в атмосферу. Когда геохимики провели анализ пиритов из осадочных пород, охватывающих большой диапазон возрастов, они обнаружили определенную изотопную сигнатуру практически во всех образцах старше 2,45 миллиарда лет, но не в более молодых породах.
Это открытие является максимально убедительным доказательством, что вплоть до 2,45 миллиардов лет назад Земля не имела озонового слоя, а значит, в атмосфере было мало кислорода. Неизвестно, почему именно в это время количество кислорода выросло так резко. Большинство предположений сходятся на том, что оно изменилось на несколько порядков — от почти нуля до примерно 1 процента. Это глобальное изменение назвали «кислородной катастрофой». Кислороду предстоял еще долгий путь до современного уровня, и имеющиеся данные говорят, что это увеличение прошло отнюдь не плавно и стабильно: на пути оказывались и всплески, и провалы. Однако важнейший порог был преодолен 2,45 миллиарда лет назад — примерно в конце архейского эона. С этого времени атмосфера планеты содержала кислород, пусть поначалу и немного.
Атмосфера того времени, возможно, отличалась от современной и по другим параметрам. В начале 1970-х годов астроном и популяризатор науки Карл Саган указал, что 4,5 миллиарда лет назад тепловыделение Солнца было на 20–25 % меньше, чем сейчас, а потом постепенно увеличивалось до современного уровня. Этот вывод, основанный на хорошо известных закономерностях эволюции звезд, похожих на наше Солнце, имеет важные последствия для климата Земли. Это привело к так называемому «парадоксу молодого слабого Солнца»: если уровень солнечной энергии был в прошлом настолько низким, то почему в геологической летописи нет свидетельств, что планета находилась в замороженном состоянии? Ответ почти наверняка заключается в том, что температуру планеты поддерживали улавливающие тепло парниковые газы, которых в то время в атмосфере было гораздо больше, чем сегодня.
Из всех парниковых газов чаще всего мы слышим об углекислом газе (он же диоксид углерода или двуокись углерода). Его концентрация в атмосфере древней Земли, возможно, была в несколько раз выше сегодняшнего уровня, однако вполне может быть, что важную роль в предотвращении замерзания Земли играл и другой газ, обладающий парниковым эффектом — метан. Как и углекислый газ, метан входит в состав вулканических газов. Однако сегодня большую часть метана, попадающего в атмосферу, производят микробы. Неизвестно, когда стали развиваться эти микроорганизмы, но они имеют древнее происхождение — относятся к археям, самым ранним из известных микробов. Они процветают в условиях нехватки кислорода и, появившись на Земле, стали обильным источником парниковых газов.
Сегодня на Земле метан разрушают различные окислительные реакции: среднее время жизни молекулы в атмосфере — меньше десяти лет. Однако в бескислородных условиях ранней Земли молекулы метана оставались в атмосфере в тысячу раз дольше, и поэтому общие концентрации могли бы достичь гораздо больших величин. В сочетании с высокой концентрацией углекислого газа это могло уберечь планету от замерзания, а может быть, даже делало ее довольно теплой. Когда в атмосфере появился свободный кислород, содержание метана начало уменьшаться, но это падение, видимо, было не резким, поскольку уровень кислорода оставался низким на протяжении всего протерозойского эона.