Читаем Загадка булатного узора полностью

Было решено приготовить на техническом железе и графите синтетический чугун, содержащий как можно менее вредных примесей. Предполагалось чугун расплавлять в тигле индукционной печи и погружать в него кусочки малоуглеродистого железа. Температура в печи должна была поддерживаться на уровне 1460 °C, чтобы железо не плавилось, а лишь растворялось в жидком чугуне. Наши первые эксперименты полностью подтвердили теорию А. П. Виноградова и окончательно установили, что при искусственно созданной неоднородности в жидкой или полужидкой стали можно получить слиток высокоуглеродистого сплава с включениями частиц малоуглеродистого железа. Появление булатного узора после деформации такого слитка и получение отличительных свойств, приписываемых булатам, теперь сомнений не вызывало. Надо было только хорошо отработать все детали технологии плавки. Пришлось провести немало опытов, отлить десятки слитков, чтобы научиться управлять процессом, задавать и выдерживать требуемый химический состав стали.

Краткие особенности технологии производства булата в индукционной сталеплавильной печи оказались следующими. В печь загружается железо или малоуглеродистая сталь в количестве 12–24 кг, плавится и подогревается до температуры 1650 °C. После подогрева расплав раскисляется кремнием и алюминием. Затем металл науглероживается графитом, в результате чего получается синтетический чугун с содержанием углерода 3,0–4,0 %. Когда чугун готов, в расплав вводится мелкодробленая обезжиренная стружка малоуглеродистой стали или мягкого железа в кусочках размером не более 10–15 мм. Каждый кусочек должен быть сухим, чистым, без ржавчины, цветов побежалости, каких-либо следов окисления. Количество стружки составляет 50–70 % от массы чугуна — в зависимости от требуемого состава стали.

Стружка вводится постепенно, порциями. Перед присадкой каждой порции стружки в жидкую ванну температура металла не должна превышать 1480–1500 °C. Необходимая степень оплавления стружки определяется с помощью стального прутка диаметром 15–20 мм. Таким прутком, после дачи каждой порции стружки, металл перемешивается до тех пор, пока можно ощущать удары твердых кусочков стружки, движущихся в ванне под действием электромагнитных потоков, о пруток. Таким образом, при приобретении навыка можно определять примерные размеры твердых включений малоуглеродистой стали в жидкой ванне.

По мере оплавления каждой порции стружки металл приобретает полужидкое или кашицеобразное состояние. В связи с этим перед присадкой следующей порции стружки он должен быстро подогреваться до необходимой температуры. После присадки последней порции стружки расплав, если это необходимо, нагревается до получения достаточной для разливки жидкоподвижности и раскисляется алюминием. Степень подогрева должна быть такой, чтобы в расплаве фиксировалась неоднородность — наличие недорасплавленных мелких стальных частиц. Благодаря тому, что эти частицы под действием электромагнитного поля взвешены во всем объеме жидкой ванны, готовую сталь можно выливать из тигля индукционной печи в форму.

Приготовленные нами булаты либо выливались в графитовые формы, либо оставлялись остывать в печи. В том и другом случае слиток медленно остывал в течение нескольких часов. Если полученный сплав выливался в графитовую форму, то необходимо было применять повышенный расход стружки. В этом случае получались булатные слитки с высокоуглеродистой матрицей, в которую вкраплены частицы мягкого железа (фото 5). Оплавившиеся частицы мягкого железа успевали науглероживаться в период плавки только с поверхности. Поэтому они сохраняли небольшое содержание углерода в сердцевине (0,03–0,05 %), в то время как среднее содержание углерода в матрице составляло 1.4–1,6 %.

Если же сплав до конца плавки поддерживался в кашицеобразном состоянии и застывал непосредственно в печи, применялся низкий расход стружки. Науглероживание частиц железа в этом случае происходило в большей степени. Концентрация углерода в преобладающем большинстве включений достигала 0,8–1,0 %, а содержание углерода в матрице оставалось на прежнем уровне (1,5 %). Интересно, что поверхность включений также науглероживалась более сильно (фото 6).

Слиткам, полученным по первому способу, дали название булатов с ферритными прослойками, а по второму — булатов с углеродистыми прослойками. Струйчатые узоры на изделиях можно получать только из слитков булата с ферритными прослойками.

Позднее мы научились изготовлять легированные булаты. В частности, для подчеркивания узора в сталь иногда вводили кремний и фосфора которые повышают устойчивость феррита при ее термической обработке. Вводя в сплав никель и хром, можно получить нержавеющие булаты.

Перейти на страницу:

Похожие книги

Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература
Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука