Читаем Загадки для знатоков. История открытия и исследования пульсаров полностью

Наш поиск нейтронных звезд затянулся. Кому может понравиться расследование, в котором автор, раззадорив фантазию читателя, наговорив ему о том, что нужно мыслить раскованно, сам топчется на месте, вместо того чтобы вести дело к развязке?

Однако причины временного затишья в исследованиях нейтронных звезд были объективными. И объективные же причины привели затем, в шестидесятых годах, к взрывоподобному росту интереса к нейтронным звездам…

К концу пятидесятых годов положение в теории звездной эволюции стабилизировалось. Никто не сомневался в том, что ассоциации звезд существуют и что именно в ассоциациях, группами, возникают звезды. Но вот из чего они возникают — из межзвездного газа или из гипотетических сверхплотных Д-тел, введенных в астрофизику В. А. Амбарцумяном, — на этот вопрос еще не было твердого ответа. Однако если уж. звезда как-то образовалась, то можно проследить дальнейший ход ее эволюции. Это оказалось возможным сделать именно в конце пятидесятых годов, когда астрофизики начали использовать для своих расчетов электронно-вычислительные машины. По нашим сегодняшним меркам эти ЭВМ были громоздкими и медлительными, но уже могли выполнять вычисления, на которые прежде уходили годы. Применение ЭВМ позволило астрофизикам взяться за решение сложнейшей теоретической задачи, давно дожидавшейся своего часа. Задачи о внутреннем строении звезды. Задачи о звездной эволюции.

Обычная звезда — нагретый газовый шар, и действуют в ней газовые законы. Или, как говорят физики, уравнение состояния звездной материи есть уравнение состояния высокотемпературной плазмы. Дело, однако, усложняется оттого, что в звезде идут ядерные реакции синтеза — они-то и разогревают звезду. Реакции идут в самых горячих и плотных областях звезды, в ее центральной части, о строении которой нам пока ничего не известно — ведь видим мы лишь поверхность звезды, ее фотосферу. Энергия, которая выделяется при ядерном синтезе, должна проделать сложный путь в недрах звезды, пронзить всю ее толщу, прежде чем достигнет фотосферы и излучится в пространство. Ни одному кванту света — фотону — это не под силу, звезда непрозрачна. Фотон поглощается, пройдя в веществе звезды очень небольшое расстояние. А вместо поглощенного фотона излучается другой — в ином направлении и с иной частотой. Процесс поглощения и излучения занимает время, и энергия, выделившаяся сегодня в центре звезды от слияния четырех атомов водорода в один атом гелия, достигнет фотосферы и излучится в космос через много лет, претерпев множество превращений.

Да и само вещество звезды тоже не статично — в нем постоянно перемешиваются слои плазмы, опускаются и поднимаются, в них постоянно возникают и гаснут вихри. Звезда — газовый шар, говорим мы. Но за этими простыми словами скрывается очень сложное и богатое физическое содержание. Чтобы хоть приближенно разобраться в строении этого газового шара — звезды, нужны неимоверно сложные расчеты реакций, состояний, процессов. Расчеты, ставшие технически выполнимыми только после появления ЭВМ.

Когда астрофизики-теоретики начали рассчитывать звездные модели, стала проясняться истинная картина эволюции звезды. Вот она в нескольких словах.

Звезды рождаются с разными массами — от десятых долей массы Солнца до десятков солнечных масс. В их недрах начинает гореть водород, превращаясь в гелий. Постепенно водород «выгорает», ядро звёзды сжимается, поскольку из-за нехватки горючего газовое давление в нем падает, и тогда начинают идти более сложные реакции, требующие более высоких температур и плотностей — загорается гелий. Эта стадия эволюции протекает значительно быстрее. В ядре уже нечему гореть, и реакции идут в тонком слое между ядром и оболочкой звезды. Давление на оболочку увеличивается, оболочка «разбухает», звезда становится красным гигантом, и тут… И тут ее структура становится настолько сложной, что даже современные ЭВМ часто не в силах помочь.

Помогают наблюдения. Стадия красного гиганта — одна из последних в жизни звезды. Ядро красного гиганта успевает за короткое время так сжаться, что, в сущности, представляет собой почти белый карлик. «Неполный карлик» — такое выражение можно встретить в фантастическом рассказе М. Лейнстера. Если найдется сила, которая «сдерет» с красного гиганта его оболочку, то ядро со временем превратится в обычного белого карлика.

А если масса ядра больше предела, установленного С. Чандрасекаром для белых карликов? Прежде, как вы помните, с этой проблемой расправлялись быстро: звезда в течение эволюции теряет всю лишнюю массу и все равно становится белым карликом. Но в конце пятидесятых годов стало ясно, что это может быть и не так. И теоретики забеспокоились — как же быть с массивными звездами?

Перейти на страницу:

Похожие книги

Этюды о Вселенной
Этюды о Вселенной

В книге известного итальянского физика - теоретика Т. Редже популярно рассказывается о проблемах и достижениях современной физики, астрофизики и космологии. Автор легко и непринужденно переносит читателя из мира элементарных частиц в мир разбегающихся галактик, умея выявить общность, на первый взгляд, далеких друг от друга явлений природы.Парадоксы теории относительности и гравитация, черные дыры и эволюция Вселенной, строение атома и сверхпроводимость - таков диапазон рассмотренных тем. Последние главы книги посвящены великим ученым: Галилею, Максвеллу, Эйнштейну и Гёделю. Приводится также короткий юмористически - фантастический рассказ о создании вечного двигателя. Книга будит воображение, написана живым, образным языком, без использования математического аппарата.

Екатерина Алексеевна Ульянова , Тулио Редже

Астрономия и Космос / Физика / Прочая научная литература / Психология / Образование и наука