Читаем Загадки для знатоков. История открытия и исследования пульсаров полностью

Если оба числа точно совпадут, это может оказаться и случайностью. Вспомним, как все 12 сверхновых, обнаруженных Р. Минковским и Ф. Цвикки в тридцатых годах, оказались сверхновыми первого типа. Был сделан «естественный» вывод: все сверхновые именно такие. Слишком уж мала была вероятность случайного совладения. Сейчас мы знаем, однако, что сверхновые I и II типов вспыхивают в спиральных галактиках почти одинаково часто. Или пример Крабовидной туманности — счастливая, богатая загадками, случайность.

Можно привести немало примеров из истории астрономии, когда случайности, статистические отклонения определяли развитие исследований на годы и десятилетия. Но случайности только оттеняют закономерности. Нужно все же исходить из того, что все в природе происходит с закономерностью. При этом нужно помнить, что речь идет о закономерности статистической, где всегда есть, конечно, риск случайного совпадения или отклонения. Если каждый год рождается, скажем, одна нейтронная звезда, и если каждый год происходит одна вспышка сверхновой, и если мы к тому же знаем, что эти два явления связаны, то из этого следует с определенной вероятностью, что связаны они однозначно.

Прежде чем перейти к числам, давайте проследим жизненный путь звезды с самого момента ее рождения.

Звезды рождаются при конденсации межзвездного газа. Газ сжимается под действием собственного тяготения. Разваливается на сгустки. Каждый сгусток продолжает сжиматься, пока недра его не станут настолько горячи, что начинают идти ядерные реакции. Так рождается звезда.

Звезды при рождении имеют самые разные массы. И чем больше масса звезды, тем меньше вероятность ее рождения. Самые распространенные звезды в Галактике — это карлики с массой меньшей, чем масса Солнца. Время их жизни так велико, что даже те карлики, которые родились вместе с Галактикой, еще не завершили эволюцию. А вот массивные звезды, напротив, живут недолго. Звезда с массой 10 масс Солнца светит так ярко, что весь свой запас ядерного топлива сжигает за 100 миллионов лет. И гибнет. Если бы такие звезды не возникали постоянно и в наши дни, то давно бы ни одной массивной звезды в Галактике не осталось. Существует так называемое динамическое равновесие — сколько звезд с данной массой ежегодно рождается, столько же примерно и умирает. Так что общее число таких звезд остается без изменения.

Мы хотим знать, сколько звезд данной массы ежегодно умирает в Галактике. Из наблюдений обычных звезд мы можем, однако, определить, да и то приблизительно, только число рождений. Впрочем, если мы говорим, что умирает ровно столько звезд данной массы, сколько рождается, то достаточно, казалось бы, определить число рождений…

На самом деле все не так просто. Звезда проходит нелегкий жизненный путь, ядерные реакции в ее недрах то затухают, то идут более интенсивно. Меняются источники энергии — когда кончаются запасы водорода, начинают «сгореть» более тяжелые элементы. Кроме того, недра звезды постоянно «клокочут» — одни слои поднимаются вверх, другие опускаются, вещество перемешивается. Из-за этих, а также из-за множества других причин звезда постоянно «худеет» — теряет вещество. Масса звезды перед смертью оказывается заметно меньше той, что была при рождении. А сколько именно вещества звезда успевает потерять — точно неизвестно. Вот еще одна загадка, и, не разгадав ее, никто не сможет сказать, сколько именно звезд в Галактике имеют перед смертью массу большую, чем чандрасекаровский предел. Ведь если масса звезды в конце эволюции окажется меньше, чем 1,4 массы Солнца, то возникнет «всего лишь» белый карлик. Рождение белого карлика сопровождается красивым явлением — образованием и расширением так называемой планетарной туманности. А рождение нейтронной звезды? Можно ли наконец сказать, что оно всегда сопровождается взрывом сверхновой?

Если верны подсчеты звездных рождений, то нужно ожидать, что в Галактике каждые несколько лет коллапсирует одна звезда. А если верны подсчеты вспышек сверхновых, то числа получаются несколько иными…

Еще в 1933 году Ф. Цвикки начал патрулирование далеких галактик с целью поиска сверхновых. Это патрулирование возобновилось после второй мировой войны, продолжается оно и сейчас. Обнаружено более 400 вспышек в различных галактиках. Редко в какой галактике удается наблюдать две или три вспышки — ведь сверхновые вспыхивают редко. Поэтому, для того чтобы оценить, как часто вспыхивают сверхновые, астрофизикам приходится использовать косвенные методы. Так, американский астрофизик Л. Барбон собрал в единый список все вспышки, подсчитал число галактик, в которых эти вспышки произошли, разделил число вспышек на число галактик да еще на время, в течение которого велось патрулирование, и получил, что, например, в спиральных галактиках, таких, как наша, одна вспышка сверхновой случается каждые 30—100 лет. Довольно неопределенная величина, верно? А между тем некоторые исследователи считают, что сверхновые вспыхивают еще реже. Или, наоборот, чаще.

Перейти на страницу:

Похожие книги

Этюды о Вселенной
Этюды о Вселенной

В книге известного итальянского физика - теоретика Т. Редже популярно рассказывается о проблемах и достижениях современной физики, астрофизики и космологии. Автор легко и непринужденно переносит читателя из мира элементарных частиц в мир разбегающихся галактик, умея выявить общность, на первый взгляд, далеких друг от друга явлений природы.Парадоксы теории относительности и гравитация, черные дыры и эволюция Вселенной, строение атома и сверхпроводимость - таков диапазон рассмотренных тем. Последние главы книги посвящены великим ученым: Галилею, Максвеллу, Эйнштейну и Гёделю. Приводится также короткий юмористически - фантастический рассказ о создании вечного двигателя. Книга будит воображение, написана живым, образным языком, без использования математического аппарата.

Екатерина Алексеевна Ульянова , Тулио Редже

Астрономия и Космос / Физика / Прочая научная литература / Психология / Образование и наука