Читаем Загадки для знатоков: История открытия и исследования пульсаров. полностью

Причина угасания излучения пульсаров понятна: вращение нейтронной звезды тормозится, вращательная энергия уменьшается, таинственный механизм генерирует все меньше быстрых частиц. Да и магнитное поле пульсара может со временем ослабевать, и пока неизвестен механизм, который мог бы воссоздавать это поле. А может быть, как считают советские астрофизики О. X. Гусейнов и И. М. Юсифов, со временем сближаются друг с другом магнитная ось пульсара и ось вращения. Как мы уже знаем, при этом и эффект пульсара неизбежно пропадает…

Сейчас, через двадцать лет после открытия пульсаров, мы все еще ничего не знаем о том, что происходит в их недрах. Раньше говорили, что нейтронная звезда — мертвое тело. Потом оказалось — нет, она живет! Момент смерти отодвинули на несколько миллионов лет. Но может, и тогда звезда не умирает? Может, включаются новые источники энергии, не связанные с вращением? А если даже и не так, если нейтронная звезда-пульсар, прожив половину галактического месяца, угасает окончательно — неужели нет способа такую звезду все же обнаружить?

Способ есть, и мы его уже обсуждали. Вспомним идею Я. Б. Зельдовича о том, что огромное поле тяжести нейтронной звезды должно притягивать газ и разгонять его до скорости около 100 тысяч км/с. Когда такой газ достигает поверхности нейтронной звезды, возникает, говорили мы, рентгеновское излучение. Открытие пульсаров отвлекло нас от обсуждения этой идеи. Но астрофизики об аккреции никогда не забывали. Пока считается, что нейтронная звезда, замедлив вращение, перестает быть радиомаяком, аккреция остается единственным физическим процессом, наблюдая который мы можем надеяться отыскать старые нейтронные звезды. Впрочем, они уже давно открыты! В ходе расследования мы уже говорили о рентгеновских источниках. Гипотеза о том, что это горячие нейтронные звезды, быстро погибла. И осталась жить гипотеза об аккреции.

Большинство ярких рентгеновских источников — это двойные звездные системы. Одна звезда в системе — обычная. А вторая — релятивистская: нейтронная звезда или даже черная дыра. Мы говорили, что звезды, эволюционируя, «худеют», теряют вещество. В двойной системе звезда теряет массу охотнее — ведь рядом находится другая звезда, и ее тяготение буквально «выдирает» вещество с поверхности звезды-соседки. Возникает поток плазмы — струя течет от обычной звезды к релятивистской. Около релятивистской звезды образуется нагретый до миллионов градусов газовый диск, где и возникает рентгеновское излучение.

И вот что важно. Если нейтронная звезда одиночна (как, например, южная звезда в Крабовидной туманности), то измерить ее массу прямыми наблюдениями невозможно — современная астрономия таких методов не знает. Иначе обстоит дело, если нейтронная звезда входит в двойную систему. Законы Кеплера связывают период обращения звезд в двойной системе, расстояния между звездами и их массы. Период обращения звезд друг около друга надежно и очень точно определяется из наблюдений. Например, в системе рентгеновского источника Геркулес Х-1 нейтронная звезда, обращаясь около звезды обычной, каждые 1,7 суток скрывается за ней. Происходит затмение рентгеновского источника. Значит, и период обращения звезд в этой системе равен именно 1,7 суток. Теперь можно оценить и массы звезд. По современным данным, нейтронная звезда здесь имеет массу 1,3–1,5 массы Солнца. Такая же нейтронная звезда находится в системе Центавр Х-3 и, видимо, в знаменитой системе Скорпион Х-1, первом из открытых рентгеновских источников.

А вот в системе Лебедь Х-1 нейтронной звезды, по-видимому, нет. Дело в том, что релятивистская звезда здесь имеет массу не менее 3 масс Солнца. Нейтронная звезда не может быть такой массивной! Так утверждает теория. Значит, здесь черная дыра? Астрофизики все больше склоняются к мнению, что так оно и есть. Но сомнения все же остаются, потому что все аргументы — косвенные. Да, масса релятивистского компонента велика. Но, может, теория все-таки ошибается? Существуют работы, согласно которым нейтронная звезда может обладать массой до 5 масс Солнца. Да, рентгеновский источник Лебедь Х-1 обладает странной особенностью — его излучение испытывает хаотические колебания яркости, меняясь за очень короткое время — сотые доли секунды. Это совсем не характерно для нейтронной звезды-пульсара, но похоже на то, как должен излучать газ вблизи от черной дыры. Но и это лишь косвенная улика! И все же астрофизики почти уверены в том, что в системе Лебедь Х-1 находится черная дыра.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже