Не кажется ли поэтому, что геометрия египтян предназначена лишь для удовлетворения технических и практических потребностей? Она разумно использует как некоторые прямоугольные треугольники, так и священный треугольник и определяет те стороны прямого угла, которые находятся между собой в таком же отношении, как два целых последовательных числа, например, 2 и 3, 4 и 5, 8 и 9, 9 и 10 и т. д., или же составляют простые отношения, как 1 и 4, 7 и 5, 11 и 14 и т. д.
Другие арифметические или геометрические отношения выражены в планировке внутренних помещений Великой пирамиды. Так, камера, названная усыпальницей фараона, в плане имеет 10 x 20 локтей, высота же ее превышает 11 локтей на 9
Ф. Петри, основываясь на том, что один из трех размеров усыпальницы фараона не составлял целого числа локтей, счел возможным высказать предположение, что при определении размеров различных камер пирамиды (усыпальницы фараона, камеры царицы, подземных камер, передней), строители придерживались якобы правила, чтобы квадраты размеров этих камер равнялись целым числам квадратных локтей (это так называемая теория площадей). Приведенные нами выше более простые объяснения показывают, что не было никакой необходимости добиваться столь сложного решения для определения высоты усыпальницы фараона. Что же касается остальных камер, частью незаконченных, то обосновывать свои заключения на их размерах, особенно по их высоте, не имело смысла, поскольку вымостка плиточного пола не была завершена. «Передняя» же, как мы уже видели, никогда не служила камерой, а предназначалась лишь для размещения подъемных плит, преграждающих переход, и управления ими; поэтому определять ее размеры было совершенно бесполезно.
Вместе с тем многие отмечают, что вымостка пола усыпальницы фараона была якобы помещена на уровне, на котором площадь горизонтального сечения равнялась половине площади основания, а диагональ угла — одной из сторон основания. Из этих двух отношений, из которых одно является функцией другого, совершенно очевидно, что замысел строителей нашел свое отражение в соотношении площадей. Но египтяне, опытные геодезисты, безусловно знали, что площадь квадрата, построенного на диагонали, равна удвоенной площади первого квадрата. Используя данное правило, они легко определили уровень расположения погребальной камеры. Однако отсюда не следует, что из указанного свойства диагонали квадрата, являющегося лишь частным случаем для гипотенузы произвольного прямоугольного треугольника, египтяне сумели вывести основное отношение, получившее свое выражение лишь двадцать два века спустя после Хеопса в знаменитой теореме Пифагора.
В эпоху сооружения больших пирамид геометрия, таким образом, не выходила из стадии интуитивного и утилитарного эмпиризма. Жрецы-зодчие, поставленные перед трудными техническими задачами, изыскивают все более совершенные методы их разрешения; ум, все еще направленный на решение практических вопросов, не был способен целиком отдаться чисто отвлеченным исследованиям. Так были выработаны методы расчетов и построений, ссылки на которые встречаются в более поздних документах, как, например, в Папирусе Ринд или в Московском папирусе, относящихся к Среднему царству. Однако А. Рей280
спрашивает по поводу этих еще эмпирических текстов следом за Питом, так педантично опубликовавшим Папирус Ринд: «Не существовала ли геометрия более сокровенная, чем та, следы которой здесь имеются и позволяют иногда предполагать существование некоторых более остроумных решений, чем дошедшие до нас? Мы обнаружили бы тогда в сохранившихся папирусах лишь несколько полезных данных для тех, кому предстояло ими пользоваться».