В этом, ставшем хрестоматийным, опыте Ньютон разложил свет в радужный спектр. И хотя это явление, даже по словам самого ученого, уже было знаменито – о разложении солнечного света на цвета писали Рене Декарт, Франческо Мария Гримальди и Роберт Гук, – заслуга Ньютона состоит в том, что он, судя по всему, первым получил четкий спектр, состоящий из семи цветов, и связал с каждым цветом показатель преломления. Все исследователи до него довольствовались лишь мутными картинками. Ньютоновская интерпретация опытов вызвала сопротивление у уже известных и заслуженных оптиков того времени, у того же Гука например, но в конечном счете она оказалась верна.
В 1800 году исследовать спектры взялся астроном Уильям Гершель. В своих опытах он помещал чувствительный термометр в разные участки разложенного в спектр луча солнечного света. Оказалось, что помещенный в красную часть спектра термометр нагревается сильнее всего, а в фиолетовую – слабее всего. Более того, Гершель обнаружил, что термометр, помещенный за пределы красного цвета в невидимую глазу область, нагревается еще сильнее39
. Теория о существовании невидимого более «горячего», чем даже в красной части спектра, излучения напрашивалась сама собой. Так были открыты инфракрасные лучи. Гершель также заметил, что мельчайшие доли примесей в горючем веществе дают различные цвета пламени, и он был первым, кто предложил по цвету огня определять химический состав смесей различных веществ.Чуть позже Томас Юнг установил, во-первых, что свет имеет волновую природу, а во-вторых, что цвет излучения зависит от длины волны света. Свет, распространяющийся в пространстве, можно представить себе волнами на глади пруда. Длина волны, и ее частота, связаны следующим образом:
где
Следующее важное событие произошло в 1802 году. В этом году английский химик и минералог Уильям Хайд Волластон опубликовал статью, в которой сообщал о неких темных промежутках в солнечном спектре40
. К сожалению, природу темных линий он не понял, а потому не смог осознать и значимость совершенного им открытия. Ничего интересного в нем не увидели и читатели статьи. На самом же деле эти промежутки оказались линиями поглощения, о которых я уже упоминал.В 1814 году изучением свойств солнечного света занялся молодой немецкий оптик Йозеф Фраунгофер. В исследованиях ему помогали стекла непревзойденного на тот момент качества, изготовлявшиеся на принадлежащей ему фабрике. Вместо пяти линий поглощения Волластона Фраунгофер смог увидеть их целое множество. Он обнаружил, что линии поглощения в солнечном спектре соответствуют определенным частотам41
– с тех пор эти линии называют линиями Фраунгофера.Йозеф Фраунгофер не ограничился исследованиями спектра Солнца и изучал спектры других планет и звезд: Венеры, Марса, Сириуса, Кастора, Бетельгейзе и так далее. Линии поглощения наблюдались у всех исследуемых Фраунгофером звезд: они напоминали своего рода отпечатки пальцев, опознавательные знаки, отличавшие одну звезду от другой, – у каждой из звезд свой уникальный набор. А вот спектр Венеры оказался удивительно похожим на спектр Солнца, и это значило, что Венера светит отраженным светом Солнца. В 1859 году Густав Кирхгофф показал, что линии поглощения в спектрах соответствуют химическим элементам в составе излучающих тел, и объяснил, какие линии с какими элементами соотносятся42
. Три из пяти темных полос, обнаруженных Волластоном, чуть позже идентифицировали как линии поглощения, соответствующие натрию, молекулеКристиан Доплер
В мае 1842 года Кристиан Доплер, профессор математики в Пражском университете, прочитал лекцию для богемского научного сообщества, в которой утверждал, что свет, подобно звуку, может претерпевать изменение частоты вследствие движения источника. В этой лекции он сделал ошибочное предположение, что звезды движутся друг относительно друга со скоростями, которые составляют значительную часть от скорости света. Следовательно, в силу эффекта Доплера меняется частота воспринимаемого нами света. Если звезда удаляется, мы видим ее красной или оранжевой, а если приближается, то голубой.
Всего через несколько лет после Доплера, в 1848 году к идее аналогичного движения звуковых и световых источников пришел французский физик Арман Ипполит Луи Физо. В отличие от Доплера он правильно заметил, что цвет движущегося объекта никак не может измениться, поскольку все световые лучи в спектре смещаются одинаково и «каждый луч занимает место луча, который обладал этой же длиной волны, когда светящееся тело было в покое». Но все же относительная скорость звезды, как отмечал Физо в той же работе, может быть обнаружена путем измерения смещения спектральных линий поглощения43
.