Читаем Загадки микромира полностью

В то время — а случилось это более сорока лет назад — никто не слыхал об античастицах, а единственной известной физикам частицей с положительным зарядом был протон. Но протон из-за большой массы не отвечал второму решению уравнения Дирака.

Сначала казалось, что это чисто математический курьез. Но все попытки исключить второе решение ни к чему не привели. Одно из двух: либо неверна теория Дирака, либо в природе существует положительно заряженный электрон.

Предсказание Дирака было настолько необычным, что даже крупнейшие ученые далеко не сразу приняли его. Ландау, например, слушая в Харькове доклад Дирака об античастицах, приговаривал: «Дирак — дурак, Дирак — дурак». А спустя три десятилетия заявил: «Кто спорит, что Дирак за несколько лет сделал для науки больше, чем все присутствующие в этой комнате за всю свою жизнь?»

Спустя год, в 1932 году, в космических лучах был обнаружен позитрон. В камере Вильсона нашли следы частиц, которые могли принадлежать только электрону, но с положительным зарядом.

При исследовании космических лучей с помощью камеры Вильсона экспериментаторы использовали метод, предложенный еще в 1927 году советским физиком Д. Скобельцыным. Камера Вильсона помещалась между полюсами электромагнита. Это давало возможность не только видеть след элементарной частицы, но и по его искривлению в магнитном поле измерять энергию и определять знак электрического заряда пролетевшей через камеру представительницы микромира. На фотографиях, полученных в камере Вильсона, было отчетливо видно, что следы электрона и позитрона отклоняются в противоположные стороны.

Опыт подтвердил теорию. Двадцативосьмилетний Поль Дирак пополнил список лауреатов Нобелевской премии.

После открытия позитрона возник вопрос: а не имеет ли каждая элементарная частица «антиотражения»? Экспериментаторы занялись поисками антипротона в космических лучах. Электрон-позитронная пара будто бы подтверждала теорию Дирака. Но нет-нет да и закрадывалась мысль об исключении, сделанном природой именно для этих частиц.

«Интервал времени между предсказанием антипротона и его наблюдением в 1955 году был слишком велик, — говорил академик Я. Зельдович, — и у некоторых теоретиков нервы не выдержали — в последние годы появились попытки построить теорию без антипротонов».

Лишь четверть века спустя после предсказания Дирака группа американских ученых под руководством Эмилио Сегре и Оуэна Чемберлена обнаружила антипротон. А через год нашли и антинейтрон.

Ухватившись за позитронный конец, физики сначала медленно, а затем все быстрее и быстрее стали вытягивать сеть с античастицами. И теперь никто уже не сомневается в том, что у каждой элементарной частицы есть своя тень — соответствующая античастица.

Изучая следы позитронов в камере Вильсона, физики сразу же обнаружили, что электрон и позитрон, встречаясь друг с другом, взаимно уничтожаются — аннигилируют.

За природу бояться было нечего — она при этом ничего не теряла. Масса обеих частиц превращалась в другой вид материи — в энергию, количество которой легко подсчитать по известной формуле Альберта Эйнштейна E = mc2.

«Этот результат новейшей физики, — писал лауреат Нобелевской премии Макс Лауэ, — является самым потрясающим из всего, что когда-либо приносило развитие естествознания».

Какими же странными оказались элементарные кирпичики материи! Даже такие стабильные частицы, как протон и электрон, могли «исчезнуть» вместе со своими античастицами. Невольно закрадывалась мысль: как могли до нашего времени сохраниться древние породы, сложенные из такого непрочного материала?

Но дело все в том, что элементарные частицы проявляют готовность к превращениям только в специфических условиях радиоактивных ядер и при встрече с античастицами. В доступной нам области мира стабильных ядер неизмеримо больше, чем радиоактивных. А от аннигиляции нас спасает отсутствие в заметных количествах античастиц.

Эра гиперонов

Не так давно еще робость порой мешала физикам признать преподносимые природой новые частицы. Но к началу 50-х годов психология физиков заметно изменилась. Осмелев, они начали «сочинять» новые роли для неоткрытых элементарных кирпичиков, а потом подыскивать для них исполнителей. Как мореплаватели времен Колумба, физики устремились в манящую, неизведанную страну микромира, увлеченные поисками новых частиц.

Ученые с помощью камер Вильсона изучали столкновения элементарных частиц с ядрами. В камеру помещали пластинки из необходимого вещества и прослеживали путь частицы до нее, а также следы тех частиц, которые вылетали из пластинки.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука