А пока надо было как можно точнее учесть все возможные ошибки, какие могли внести сами условия эксперимента, и провести заключительный этап — математическую обработку результатов. Вот тут-то и заговорили цифры, да еще как!
«Протон похож на шарик не из желе, а из малинового джема с семечками», — так передал свое впечатление один из теоретиков, интерпретировавших результаты Панофского. Рассеяние электронов происходило так, будто протон состоял из точечных частиц.
Известный американский физик-теоретик Фейнман окрестил их именем «партоны». Это слово образовано от английского «part», что означает «составная часть». Такое простое понятие содержит в себе не менее глубокую бездну неизведанного, чем загадочный «кварк».
В 1969 году на Международной Рочестерской конференции в Киеве физики впервые услышали о партонах. Многие из них сразу задумались: можно ли отождествить партоны с кварками?
К сожалению, четкого ответа на этот вопрос не существует. Природа партонов не ясна. Одни предполагают, что партоны — пи- или ка-мезоны. Другие считают, что партоны подобны кваркам. Действительно, если им приписать дробный электрический заряд, то теоретические расчеты хорошо согласуются с экспериментом.
И все-таки нельзя считать доказанным существование кварков. Рассеяние быстрых электронов на нуклонах дает нам, как говорит Фейнман, лишь «моментальный снимок» составных точечных частиц в нуклоне. А по нему невозможно судить о том, как они должны выглядеть в свободном состоянии и какими свойствами должны обладать.
Хорошо знакомый нам нейтрон имеет разные свойства в зависимости от того, где он находится: в свободном состоянии или же, например, в любом атомном ядре. Ядро это стабильно, а извлеченный из него нейтрон нестабилен. Не проходит четверти часа, как он распадается на протон, электрон и нейтрино.
Кварк с дробным зарядом и большой массой тоже должен подвергнуться метаморфозе, если когда-нибудь очутится в свободном состоянии. Разве сморщенный комочек резины похож на красивый надутый шарик?
Какими окажутся партоны, если их удастся рассмотреть подробно, — неизвестно. И здесь открывается безбрежный простор для теоретического воображения!
Утраченные иллюзии
Он шел средь мрака неохватного
Вслед за звездой падучей,
Сквозь неопределенность квантовой
Механики грядущей.
Когда же следующий занавес
Внезапно был распахнут,
Он взял иной предел и заново
Смешал фигурки шахмат.
Великолепные фейерверки элементарных частиц вскоре перестали поражать воображение первооткрывателей. Регистрация каждого следующего резонанса — а число их перевалило за сотню — доставляла исследователям те же эмоции, которые владеют медицинской сестрой при взгляде на длинную очередь больных.
Если бы цель и задача физики микромира заключалась только в «выписывании паспортов» для все новых и новых частиц, то больше не о чем было бы и рассказывать.
«Человек осваивает Землю, и этот процесс непосредственно связан с расширением его знаний о законах природы», — писал физик-теоретик, лауреат Нобелевской премии Е. Вигнер. Следовательно, цель науки не только открытие и описание явлений и процессов, протекающих в природе. Главное — поиски закономерных связей между ними.
Несколько столетий назад были открыты и изучены три основных закона механики — закон сохранения энергии, закон сохранения импульса и закон сохранения момента количества движения. На эти три закона сохранения опирается вся классическая физика.
Открыв атомное ядро и элементарные частицы, ученые проникли в новую область природы. Здесь впервые обнаружилась ограниченность некоторых законов макромира. В микромире действовали свои, квантовые законы. Атомы и элементарные частицы тоже подчинялись трем великим законам сохранения, но описывались уже не механикой Ньютона, а механикой квантовой.
До начала XX века физики не подозревали, что существует прямая связь между тремя законами сохранения и такими простыми свойствами пространства и времени, как их однородность и одинаковость физических свойств по всем направлениям, называемая изотропностью.
Закон Ома для электрических цепей прекрасно выполняется как в московской школе, так и за тысячи километров от нее — в школах Индии. А почему этот, и любой другой, закон природы «работает» сегодня так же хорошо, как вчера, а завтра наверняка будет таким же, как и сегодня? Да все потому, что пространство и время, в которых мы живем, однородны. Их свойства везде и всегда одинаковы.
Мы никогда не обращаем внимания на это обстоятельство. Оно вроде бы нас и не касается. А судьбы законов природы — быть им или не быть? — прямо зависят от свойства однородности, симметрии, присущего пространству и времени.