Читаем Загадки микромира полностью

Нам пришлось вспомнить об этом потому, что в основе современной квантовой теории элементарных частиц лежит теорема CPT. Смысл ее в том, что все процессы должны одновременно подчиняться принципу пространственной — P-, зарядовой — C- и временной — T-симметрии. Другими словами, любое явление в микромире, если его отразить в зеркале, частицы в нем заменить на античастицы, а конечное состояние заменить начальным, то есть изменить направление времени, должно превратиться в явление, тоже реально существующее в природе.

До экспериментов с ка-мезонами никто не сомневался, что все три типа симметрии как вместе, так и по отдельности — это строгие законы природы. Но первые два уже утеряли свою универсальность. Чем это грозит?

Если нарушается CP-симметрия, а T-симметрия остается, то рушится вся теорема CPT. Она, эта общая CPT-симметрия, может остаться в силе лишь в том случае, если нарушаются одновременно CP- и T-симметрии.

Так, лишившись двух фундаментальных законов, физики «добровольно» отказываются от третьего. Более того, они стараются доказать его нарушение, чтобы спасти основы теории. Имеет ли время власть над микромиром?

Выяснить это намного сложнее, чем в макромире. Временнáя T-симметрия накладывает запрет на некоторые физические явления. Например, у элементарных частиц не должно быть электрического дипольного момента. Можно представить, что нейтрон состоит из положительного и отрицательного зарядов, центры тяжести которых раздвинуты. Отсюда возникает электрический дипольный момент. Если ядерные процессы обратимы, то этот момент у нейтрона должен быть равным нулю.

В лаборатории нейтронной физики дубненские ученые давно уже ищут возможность для проникновения в тайну электрического дипольного момента частиц. Во всех прежних экспериментах он не был обнаружен. Но сказать, что момент этот равен нулю, пока никак нельзя — точность опыта еще недостаточно высока. Нейтроны так быстро проскакивают рабочий объем установки, что очень малое их количество распадается за это время. Даже медленные, или тепловые, нейтроны и те движутся со скоростью два километра в секунду. Нейтронный «шквал» за ничтожные доли секунды пересекает весь прибор, а для измерения дипольного момента очень важно, чтобы нейтрон как можно дольше находился в поле зрения наблюдателей, «в руках экспериментаторов». Ведь за это время надо изучить его поведение под действием электрических и магнитных полей.

Возникла, таким образом, необходимость в нейтронах гораздо более медленных, чем тепловые. Именно такие ультрахолодные нейтроны, со скоростью несколько метров в секунду, встречаются среди частиц, вылетающих из ядерного реактора. Но их очень мало: на сто миллиардов всех нейтронов приходится только один ультрахолодный.

Вот если бы собрать да законсервировать эти нейтроны, тогда и эксперимент по измерению дипольного момента можно было бы провести с высокой точностью.

И эта, казалось бы, фантастическая идея оказалась практически выполнимой. Около двадцати лет назад итальянский ученый Э. Ферми и советский физик-теоретик И. Померанчук показали, что ультрахолодные нейтроны должны полностью отражаться от поверхности некоторых веществ.

Десять лет спустя академик Я. Зельдович теоретически доказал, что, используя свойство отражения, можно «выловить» ультрахолодные нейтроны из реактора и накопить их в специальной ловушке в количестве до ста миллионов в одном кубическом метре!

В это трудно было поверить. Ведь нейтроны довольно проникающие частицы, а тут предсказывалось, что они не смогут покинуть ловушку, сделанную из тончайшей медной фольги.

Необыкновенное поведение ультрахолодных нейтронов объяснялось их волновыми свойствами. Длина волны этих частиц равна одной стотысячной доле сантиметра. Но в микромире даже она кажется Гулливером среди атомов-лилипутов. Поэтому, падая на поверхность вещества, волна взаимодействует одновременно с большим числом ядер атомов меди. И хотя энергия такого взаимодействия очень мала, она все-таки того же порядка, что и энергия самих ультрахолодных нейтронов. Вот почему уже первые слои атомных ядер фольги создают на пути волны ультрахолодных нейтронов непреодолимый энергетический барьер. Ударяясь о него, как морская волна о крутой берег, она откатывается назад.

Группа ученых лаборатории нейтронной физики ОИЯИ под руководством Ф. Шапиро уже приступила к созданию «консервов» из нейтронов. Их задача формулировалась очень просто: найти и отобрать иголки — ультрахолодные нейтроны — в стоге сена, то есть среди сотен миллиардов всех остальных нейтронов.

В поток нейтронов, выходящих из атомного реактора, экспериментаторы поместили медную трубу, изогнутую на удаленном от реактора конце. Тепловые нейтроны, летящие с огромной скоростью, «прошивали» стенки трубы в месте ее изгиба и мчались дальше. Ультрахолодные же, попав в трубу, уже не могли из нее выбраться и превращались в ее пленников. Как слепые котята, тыкались они в стенки и, отражаясь от них, ползли вдоль трубы, следуя ее изгибам.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика