Во время низовых метелей крупные кристаллы льда заряжаются отрицательно, а более мелкая Снежная пыль – положительно. Свежевыпавший снег во всех случаях обнаруживает более значительную электризацию, чем уже слежавшийся. При взвихривании снежной пыли в воздухе может возникать объемный заряд до 1–8 кулон! м3. Особенно сильные электрические поля (до 100 в/см) наблюдаются во время снежных метелей в полярных и высокогорных областях, где за счет электризации антенн сухим снегом весьма усиливаются помехи радиосвязи. Сталкиваясь с проводами линий телефонной или телеграфной связи, снежинки из метельных потоков передают им свой заряд. При хорошей изоляции от земли, заряд может накопиться такой большой, что в прилегающем воздухе возникнет коронный разряд.
Покоритель Джомолунгмы Н. Тенсинг в 1953 году в районе Южного Седла этой горной вершины на высоте 7,9 км над уровнем моря при температуре – 30°C и сухом ветре до 25 м/сек наблюдал сильную электризацию обледеневших брезентовых палаток, вставленных одна в другую. Пространство между палатками было наполнено при этом многочисленными электрическими искрами.
Любопытно отметить, что в сильных электрических полях кристаллы льда растут в виде тонких нитей, вытягивающихся вдоль поля. Наиболее сильные поля разрывают эти нити на множество мелких ледяных осколков.
Движение лавин в горах в безлунные ночи иногда сопровождается зеленовато-желтым свечением, благодаря чему лавины становятся видимыми. Обычно световые явления наблюдаются у лавин, которые движутся по снежной поверхности, и не наблюдаются у лавин, проносящихся по скалам. По-видимому, причиной свечения лавин является коронный электрический разряд наэлектризованных масс снега. На озерах Антарктики во время полярной ночи иногда возникает свечение при разламывании крупных масс озерного льда. Свечение это – результат электрического разряда, возникающего при разрушении льда.
Известную ясность в вопрос сильной электризации ледяных кристаллов во время метелей может внести рассмотрение фотоэффекта с поверхности льда. «Лабораторные исследования, показали, что фотоэлектрическая чувствительность льда значительно выше, чем у воды, и составляет около 70% фотоэлектрической чувствительности окиси меди, а для длины волны около 0,7 микрона перекрывает ее. Согласно другим данным, фотоэлектрическая чувствительность льда составляет 0,1...0,05 фотоэлектрической чувствительности цинка. Все это говорит о том, что лед имеет сравнительно высокую фотоэлектрическую чувствительность и легко может отдавать свои электроны при контакте с другими телами с меньшей чувствительностью к фотоэффекту.
Заряжение, кристаллов льда во время снежных метелей можно, объяснить за счет обмена зарядом при контакте между собой плоской грани одного кристалла льда с острым выступом другого. Допустим, что выступ на плоской грани кристалла имеет форму цилиндра. Тогда электрическое поле, создаваемое периферическими электронами поверхности твердого тела в верхней части выступа будет в 2 раза больше, чем над плоской поверхностью. Если над первым выступом – цилиндром расположить второй с вдвое меньшим радиусом, над вторым – третий и т.д. вплоть до последнего выступа атомных размеров, то у конца последнего выступа электрическое поле окажется примерно в 10 раз большим, чем над плоской поверхностью.
Таким образом при контакте выступа одного кристалла льда с плоской поверхностью другого поверхностным электрическим полем электроны будут перегоняться с выступа на плоскость. Так как у мелких кристаллов относительное количество выступов больше, чем у крупных, то при контакте первые будут заряжаться положительно, а вторые отрицательно.
В поле силы тяжести затем происходит разделение зарядов. Более тяжелые кристаллы с отрицательным зарядом опускаются вниз, а более легкая снежная пыль с положительным зарядом остается взвешенной в воздухе. Таким образом во время снежных метелей у земной поверхности могут возникать сильные электрические поля, а вблизи зарядившихся от снега наземных объектов – коронные и даже искровые электрические разряды.
Грозы планеты
Грозой называется процесс развития в атмосфере мощных электрических разрядов (молний), обычно сопровождаемых громом и связанных в большинстве случаев с укрупнением облаков и с ливнеобразным выпадением осадков. Прохождение грозы над местностью, как правило, сопровождается довольно значительными изменениями метеорологических параметров приземного слоя воздуха (падение температуры и повышение влажности воздуха, резкое изменение атмосферного давления, силы и направления ветра).