То, что мы проделали со спичкой, называется мысленным экспериментом. Мысленный эксперимент проводится тогда, когда невозможно проникнуть в среду, где надо ставить опыт, или когда этот опыт по той или иной причине ставить нельзя. В частности, ни одному космонавту не придет в голову ставить опыт со спичкой — это небезопасно.
Мысленный эксперимент — несмотря на свою простоту и доступность, инструмент очень мощный, но пользоваться им надо осторожно. Только тогда, когда учтены все условия, в которых проводится опыт, можно получить правильный результат. Поэтому прежде чем сделать окончательное заключение о том, будет ли гореть спичка в орбитальном космическом корабле, приглядимся повнимательнее к условиям внутри кабины.
Ставя свой мысленный эксперимент, мы учитывали только влияние невесомости и получающееся вследствие нее отсутствие естественной конвекции воздуха. Естественной… Вот здесь-то и кроется наша ошибка, потому что из-за отсутствия естественной конвекции в космических кораблях и станциях конструкторам пришлось прибегнуть к искусственной. Ведь даже на Земле, несмотря на существование естественной конвекции, нам часто приходится прибегать к вентиляции помещений. В космических же аппаратах вентиляция оказывается абсолютно необходимой, в противном случае космонавтам трудно будет дышать. Если, скажем, космонавт неподвижно будет сидеть в кресле, то вокруг него будет образовываться воздушная область, перенасыщенная углекислым газом. Для того чтобы этого не случилось, используются специальные вентиляторы, которые круглыми сутками перемешивают "дыхательную среду".
Вентиляторы, кстати, выполняют не только эту задачу. Они еще и очищают воздух от пыли. В наземных условиях пыль, даже самая мелкая, все же что-то весит, поэтому со временем она опускается на пол и на различные предметы, и ее можно вытереть тряпкой или уловить пылесосом. В кабине орбитального аппарата пыль ничего не весит и никуда не опускается, и если ее беспрерывно не убирать, она будет попадать в легкие космонавтов. Правда, в существование пыли в космическом корабле или станции трудно верится: откуда, дескать, она может взяться, ведь мы привыкли, что пыль заносится в помещение с улицы. Конечно, ни пыль, ни грязь в космический корабль с улицы не заносятся.
И все же пыль есть. Истираются любые предметы. Шерстяная и хлопковая одежда, например, исторгает в атмосферу кабины частички волокон. В обитаемых космических аппаратах вентиляторы обычно затягиваются марлей, и эта марля через некоторое время оказывается полностью забитой пылью.
Кстати, одна интересная деталь: если космонавт потерял какую-нибудь мелкую вещь, он идет ее искать у вентилятора, так как рано или поздно она туда "приплывет".
Для одного из мысленных опытов возьмем круглую колбу с длинным вытянутым горлом. Заполним эту колбу наполовину водой. (Откуда и как вода попадает в колбу — вопрос тоже непростой, но до поры мы оставим его в стороне.)
Как только жидкость попадает внутрь колбы, она начинает принимать необычную форму. Вначале вода распределяется так, что со стороны горловины образуется лунка полусферической формы, будто кто-то надавил на воду невидимым шаром. Затем лунка углубляется, из полусферы она превращается в три четверти, и наконец полная воздушная сфера погружается внутрь жидкости. Хорошо видно, как сферический воздушный пузырь медленно перемещается внутри жидкости. Стенки пузыря блестящи, и он не воспринимается как воздушный, а скорее похож на твердый посеребренный шар. Со стороны горловины поверхность воды тоже не остается ровной, как это было бы в условиях Земли, а имеет сферическую кривизну, направленную внутрь жидкости.
Глядя на эту картину, нетрудно дать объяснения всем предшествующим процессам. Вода по отношению к стеклу является смачивающей жидкостью. Благодаря смачиваемости образовался вогнутый мениск. На Земле этот мениск был бы едва виден, да и то только у стенок колбы, так как возникающие силы уравновешиваются гидростатическим давлением. В невесомости гидростатическое давление отсутствует и возникающие силы перемещают жидкость по стенкам колбы, а затем замыкают ее вокруг сферического пузыря. Причем пузырь благодаря поверхностному натяжению принимает сферическую форму. На границе двух сред — воды и воздуха — свет отражается, по этой причине воздушный пузырь кажется блестящим.
Если бы мы налили в колбу не воду, а, скажем, ртуть, картинка оказалась бы иной. Ртуть по отношению к стеклу — жидкость несмачивающая, поэтому внутри колбы образовался бы ртутный шар, а вокруг него — свободное воздушное пространство.
Возвратимся, однако, к нашему опыту. Прежде чем его начать, надо было заполнить колбу водой. Предположим, вода хранится в резервуаре, от которого отходит шланг с вентилем на конце. Но ведь в самом резервуаре вода тоже занимает необычное положение, и прежде всего около шланга, где образуется, как и около горловины колбы, вогнутый внутрь резервуара мениск. Это значит, что сколько бы мы ни открывали вентиль, вода с места не сдвинется и никуда не потечет.