Но вот один из членов экипажа надевает скафандр и выходит за борт. В руках у него лассо, будто он собирается на всем скаку остановить мустанга. Пристроившись понадежнее у борта корабля, он бросает лассо в направлении базы. Думается, самый ловкий мустангер мог бы сейчас оскандалиться, его опыт оказался бы ни к чему. Здесь нужна особая сноровка, ведь лассо полетит не по параболе, а по прямой линии, поэтому накинуть его на какую-нибудь выступающую часть базы, скажем на антенну, значительно труднее. Но вот бросок удался, петля затянулась, и космонавт начинает подтягивать базу к кораблю. Или, может быть, корабль к базе? Ни то, ми другое. Оба космических аппарата начнут двигаться в полном соответствии с законами физики, то есть получат ускорения, обратно пропорциональные их массам. И снова нужно проявить осторожность: не слишком разогнаться и не забыть об амортизации, иначе может произойти космическое дорожно-транспортное происшествие. Ведь при действительной стыковке этим процессом управляют с помощью двигателей, которые могут действовать как в качестве ускоряющих, так и в качестве тормозящих.
В будущем придется перемещать в космосе значительные грузы — это случится тогда, когда па орбите будут монтироваться сверхкрупные космические объекты. И возможно, что подобное лассо может пойти в дело. Правда, в некоторых случаях опора будет вовсе отсутствовать, поэтому космическим монтажникам придется вооружиться портативными реактивными двигателями, или, как их еще называют, двигателями малой тяги.
Надо сказать, что двигатели малой тяги и сейчас играют большую роль. Двигателей этих много, они буквально облепили космический аппарат со всех сторон. Связано это с тем, что космический аппарат в отличие от передвигающихся по земле объектов имеет шесть степеней свободы. Нужно ли сориентировать аппарат на Солнце, или на какую-нибудь звезду, или на центр земного шара, нужно ли после ориентации застабилизироваться в пространстве — во всех этих случаях включаются маленькие работяги.
Читателю стоит обратить внимание на слово "застабилизироваться". Водитель автомашины при движении по прямой все время старается стабилизировать движение с помощью руля, и это понятно: неровности дороги то и дело уводят автомобиль в сторону. А почему возникает необходимость стабилизировать положение движущегося космического аппарата, ведь более ровной "дороги", чем пустота, и придумать трудно?
Это опять-таки связано с безопорным состоянием — в данном случае с безопорным состоянием корабля и отсутствием трения вращения. Любой силовой контакт внутри корабля приводит к его вращению вокруг одной, а может быть, и нескольких его осей, следовательно, пространственное положение корабля нестабильно. Так что отсутствие трения в космосе имеет не только положительную сторону.
Ветры бывают разные.
В свое время немало было сломано копий по поводу "эфирного" ветра, которого никто не мог ни слышать, ни ощущать. Считалось, что существует некая неподвижная субстанция — эфир. А раз эфир неподвижен, то всякое тело, которое относительно его движется, должно Встретить эфирный ветер. Однако опыты не смогли этот ветер обнаружить. "Раз опыты не обнаруживают эфирный ветер, — решили физики, — значит, его просто нет, как нет и самого эфира".
Гораздо удачнее сложилась судьба другого неслышного ветра — "светового". Его существование было предсказано английским ученым Джеймсом Максвеллом и подтверждено опытным путем русским ученым Петром Николаевичем Лебедевым.
Как и обычный ветер, "световой ветер" производит давление. Велико ли это давление? "Протяните ладони к Солнцу. Что вы чувствуете? Тепло, конечно. Но, кроме него, есть еще давление. Правда, такое слабое, что вы его не замечаете. На площадь ваших ладоней приходится всего около одной миллионной доли унции…" Этот пример принадлежит Артуру Кларку.
Но почему нас заинтересовал "световой ветер"? Одна миллионная доля унции — это три сотых миллиграмма.