Аристарх Самосский в 270 году дал систему мира, заново открытую Коперником; это второе открытие глубоко затронуло метафизические страсти Запада – вспомним Джордано Бруно, – оно было исполнением мощных предчувствий и утверждением того фаустовского, готического мироощущения, которое уже в архитектуре своих соборов отдало должную дань идее бесконечного пространства. Но античный мир с совершенным безразличием принял мысли Аристарха Самосского и скоро – можно сказать, намеренно – его забыл. Для этой культуры система мира Аристарха душевно была пуста. Она могла бы стать даже опасной для ее основной идеи. И все же, в отличие от системы Коперника – на этот решающий факт никогда не обращали внимания, – при некотором особом понимании система Аристарха вполне подходила к античному мироощущению. Законченный космос Аристарх представлял себе в виде полого шара, вполне не ограниченного телесно, подчиненного взору, в середине которого находится аналогично Копернику понимаемая планетная система. Таким путем преодолевался принцип бесконечности, который мог бы подвергнуть опасности чувственно-античное понятие границы. Не возникает и мысли о безграничном мировом пространстве, хотя здесь она казалась бы неизбежной – ее концепция давно уже удалась вавилонскому мышлению. Наоборот: в своей замечательной работе о «числе песчинок», являющейся, как показывает и само слово, устранением всяких тенденций бесконечного, хотя в ней и видят первый шаг к интегральному счислению, Архимед доказывает, что это стереометрическое тело – а космос Аристарха не был ничем иным, – наполненное атомами (песчинками), приводит в результате счета к очень большому числу, а. не к бесконечности. Но это и значит решительно отрицать все то, в чем для нас смысл анализа. Как доказывают постоянно терпящие крушение и вновь навязывающиеся духу гипотезы материального, то есть воззрительно представляемого, мирового эфира, вселенная нашей физики есть строжайший отказ от всякой материальной ограниченности. Платон, Аполлоний и Архимед, несомненно самые тонкие и смелые математики античного мира, с большим совершенством провели на основе пластически-античного понятия предела чисто оптический анализ ставшего. Они пользовались глубоко продуманными и нам мало доступными методами некоторого интегрального счисления, имеющего только кажущееся сходство с методом определенного интеграла Лейбница, и они применяли геометрические места и координаты, которые были только именованными числами мер и отрезками, а не как у Ферма и особенно у Декарта – отвлеченными пространственными отношениями, значениями точек в отношении к их положению в пространстве. Сюда прежде всего относится метод исчерпывания Архимеда в его открытом недавно письме к Эратосфену, где он основывает, например, квадратуру сегмента параболы на вычислении вписанных прямоугольников (уже не подобных многоугольников). Но именно тот остроумный, бесконечно сложный способ, которым он, опираясь на известные геометрические идеи Платона, приходит к определенному результату, делает едва заметным огромную противоположность между этой интуицией и лишь внешне сходной с ней интуицией Паскаля. Нет более резкой противоположности – если совершенно отвлечься от римановского понятия интеграла, – чем квадратуры Архимеда и то, что, к сожалению, до сих пор называется «квадратурами», при которых «плоскость» рассматривается как ограниченная некоторой функцией и о какой бы то ни было наглядности нет и речи. Нигде обе математики так близко не подходят друг к другу, и нигде так не чувствуется непроходимая пропасть между двумя душами, выражением которых они являются.
Чистые числа, феномен которых египтяне из глубокого страха перед их изначалом как бы скрывали в стиле своих храмов, пирамид и рядов статуй, были и для эллинов ключом к смыслу ставшего, застывшего и, следовательно, преходящего. Математическое число как формальный основой принцип протяженного мира существует только у бодрствующего человеческого сознания и для него; посредством причинной необходимости оно стоит в том же отношении к смерти, в каком хронологическое число – кстановлению, к жизни, к необходимости судьбы. Эта связь математической формы с концом органического бытия, с явлением его неорганического остатка, трупа, будет все яснее вырисовываться как источник всякого великого искусства. Мы уже отметили развитие ранней арифметики из погребального культа. Числа – символы преходящего. Застывшие формы отрицают жизнь. Формулы и законы распространяют оцепенение по лику природы. Числа убивают. Это Матери Фауста, величаво царящие в одиночестве: