Можно заразить оба штамма кишечной палочки вирусом. Вирус проникнет в бактерии и начнет в них размножаться. Его новые поколения в своем наследственном материале, или, иными словами, в молекулах ДНК, будут содержать наследственный материал кишечной палочки. Те бактерии, которые не имели фермента, перерабатывающего галактозу, информации вирусу не передадут. А те, у которых фермент есть, передадут. Это первая часть повествования о пересадке генов.
Вторая часть — рассказ о тяжелой наследственной болезни человека. Она называется галактоземией — заболеванием, при котором человеческий организм потерял способность перерабатывать галактозу. В этом случае галактоза — безвреднейший продукт — становится ядом для человека. Чтобы бороться с заболеванием, человека держат на искусственной диете, исключая из пищи галактозу. Что и говорить, такой способ лечения далек от совершенства.
И наконец, завершающая часть повествования. Ученые взяли у больного соединительную ткань, а точнее говоря, клетки зтдй ткани — фибробласты. Они имеют одну характерную особенность — могут расти вне человеческого организма. Итак, ученые работали с культурой ткани, которая способна жить и размножаться на лабораторном столе. Эти фибробласты, которые "не умели" перерабатывать галактозу, экспериментаторы заразили вирусом, содержащим ген, способный нарабатывать соответствующий фермент. Ген вирус, в свою очередь, получил "в наследство" от кишечной палочки.
И совершилось маленькое чудо. Фибробласты приобрели новое свойство. Они стали способны перерабатывать углевод галактозу. А это значит, что в них появился фермент, за наработку которого был ответствен совершенно определенный ген. Иными словами, сначала ген перенесли из бактерий в вирус, а из вируса в ДНК человеческой клетки!
Авторами этой остроумной работы были американские ученые К. Меррил, М. Гейер и Д. Патрициани. Ее результаты были опубликованы в конце 1971 года.
Трудно даже вообразить, что сулит человечеству умение пересаживать гены, несущре тот или иной полезный признак! Несколько лет назад английские ученые Р. Диксон и Д. Постгэйт сообщили о пересадке гена, ответственного за ассимиляцию бактериями атмосферного азота. Обмен генами состоялся между двумя видами родственных бактерий. А если бы удалось выделить из бактерий ген, ответственный за фиксацию атмосферного азота, а затем пересадить его в наследственный аппарат какой-нибудь полезной сельскохозяйственной культуры? Тогда растения могли сами себя подкармливать за счет атмосферного азота.
А можно ли "собрать" из подходящих генов микроорганизм, способный жить и размножаться на Марсе, генерируя при этом кислород из марсианских пород?.. Известный ученый Д. Даниэлли — руководитель Центра теоретической биологии университета штата Нью-Йорк в Буффало — считает, что лет за десять такой микроорганизм "синтезировать" вполне возможно.
Глава II. Как сохранить свою индивидуальность
В 1665 году в Лондоне заседало научное Лондонское королевское общество. Известные ученые Англии и некоторых стран Западной Европы ждали выступления английского исследователя Р. Гука. Этот молодой, разносторонне образованный ученый и изобретатель, успевший прославиться в различных областях естествознания (механике, физике, астрономии и биологии), представил Лондонскому королевскому обществу результаты своих исследований о "строении пробки, наблюдаемом при помощи увеличительных линз". Никто из присутствующих и не предполагал, что работа Р. Гука станет отправной точкой наших представлений о микроскопическом строении живых организмов.
Несколько позже исследователь писал: "Я взял кусок плотной чистой пробки и при помощи перочинного ножа, острого как бритва, срезал с него кусочек, получив таким образом чрезвычайно гладкую поверхность, а затем рассмотрел ее весьма внимательно в микроскоп. Мне кажется, что мне удалось увидеть в ней поры... Далее, эти поры, или клетки, были не очень глубоки, но состояли из большого числа маленьких отделений, разгороженных диафрагмами..."
Рассматривая срезы пробки в свой простейший по устройству микроскоп, ученый видел только высохшие мертвые стенки клеток. Однако этот научный термин выдержал проверку временем.
Сегодня мы понимаем под клеткой структурную единицу живого вещества. Клетку можно рассматривать и как самостоятельный живой организм. Многие думают, что эта структурная единица живого вещества микроскопически мала. Размеры клеток многих тканей животных и растений, бактерий колеблются от 0,2 микрона до 10 микрон. Вирусы еще мельче. Но существуют и клетки-гиганты, например яйцо курицы или страуса, достигающее в длину 18 сантиметров. Многие клетки обладают постоянной формой. Например, самые обыкновенные инфузории, сперматозоиды, эритроциты крови человека. Но некоторые клетки способны постоянно менять свою форму. Классический пример — известная всем амеба.