Читаем Закономерные чудеса полностью

Изменение внешних условий, добавление химических веществ вызывают сжатие или набухание митохондрии. Они меняют форму и объем и при заболеваниях. Если лабораторных белых крыс заставить поголодать несколько дней, то митохондрии печени этих животных набухают, а число внутренних перегородок уменьшается. Если кормление возобновляется, митохондрии очень скоро приобретают прежний нормальный вид.

Форма митохондрий довольно-таки изменчива. Обычно они имеют вид нитей, у некоторых организмов — гранул. При определенных изменениях внешней среды митохондрии чем-то напоминают дубинку доисторического человека, а иногда очень смахивают на вполне современную теннисную ракетку. Пеструю картину можно наблюдать у рыб через несколько часов после кормления. Обычно нитевидные митохондрии принимают и форму пузырьков, и теннисных ракеток, и дубинок. Через двое суток после приема пищи картина снова меняется: большинство митохондрий опять имеет форму нитей.

Вопрос о происхождении митохондрий оказался довольно-таки сложным. Во всяком случае, тут еще широкое поле деятельности для исследователей. Считается, что за 5-10 дней половина митохондрий в клетках печени обновляется. Если это так, то возникает законный вопрос: откуда берутся новые?

Существует несколько гипотез происхождения этих универсальных генераторов энергии. А когда гипотез много, это свидетельствует, что экспериментальных фактов все еще не хватает и многое еще неясно.

Одна группа ученых допускает возможность их образования из старой, материнской митохондрии. Новые митохондрии возникают в результате деления ранее существовавших.

Другие ученые полагают, что митохондрии возникают всякий раз заново из простейших составных частей клетки. Их мнение основывается на опытах с популярным объектом для биологических исследований — морским ежом. Когда яйца морского ежа подвергали центрифугированию, то получали фракцию, не содержащую митохондрий. Однако через некоторое время в этих фракциях появились митохондрии.

Наконец, третья группа считает, что митохондрии образуются из полупроницаемых оболочек, пронизывающих внутреннее содержимое клетки. И эти представления опираются на экспериментальные факты. Подобную картину можно наблюдать, например, на бактериях. Сравнительно недавно к такому же заключению пришли исследователи, работающие с нервными окончаниями термолокаторов змей — специальных органов, воспринимающих инфракрасные лучи,

Прапрапрабабушка митохондрии

В 1890 году в Лейпциге была опубликована книга немецкого исследователя А. Альтмана "Элементарные организмы и их роль в клетке". А. Альтман был цитологом, специалистом по изучению строения и жизни клетки. Рассматривая клетку под обыкновенным световым микроскопом, исследователь пришел к заключению, что митохондрии очень напоминают простейшие микроорганизмы, которые способны к саморазмножению.

Прошло почти восемьдесят лет. Цитологи были теперь вооружены самой современной научной техникой. И вот в 1969 году американский исследователь М. Насса провел опыты, которые произвели сильное впечатление в мире ученых.

М. Насса работал с живыми клетками соединительной ткани лабораторной мыши, фибробластами. Эти клетки обладают одной необычной особенностью: они способны "поедать" чужеродные частицы. Фибробласт как бы обволакивает чужеродную частицу, образует вокруг нее пузырек и постепенно ее переваривает. Когда к фибробластам добавляли митохондрии, убитые нагреванием, клетки так и поступали. Образовывали вокруг мертвых митохондрий пузырек и переваривали их. Но если к клеткам соединительной ткани добавляли живые митохондрии, картина менялась: фибробласты захватывали живые митохондрии, но не переваривали их.

В растительных клетках есть образования, подобные митохондриям, — хлоропласты. Если к клеткам соединительной ткани добавляли хлоропласты, то они чувствовали себя там превосходно. Никаких попыток к их перевариванию не предпринималось, и через пять суток существования в чреве клеток соединительной ткани хлоропласты были по-прежнему жизнеспособны.

Возникает вопрос: насколько независимы от целой клетки митохондрии и хлоропласты? Ведь недаром некоторые исследователи полагают, что современные митохондрии из клеток млекопитающих — это далекие потомки одних из самых древних обитателей нашей планеты — бактерий. А хлоропласты? У них тоже есть столь же древние предки — простейшие водоросли. Такое предположение далеко не случайно. Между митохондриями и бактериями немало общих черт. Химический состав мембран бактерий и внутренних мембран митохондрий весьма близок.

Но, пожалуй, наибольшее впечатление произвели дальнейшие работы американского биохимика М. Нассы. Он и его сотрудники обнаружили в митохондриях свою особую дезоксирибонуклеиновую кислоту. В митохондриях "самая золотая из всех молекул" имела форму не двухнитевой спирали, а кольца. Но это была самая настоящая дезоксирибонуклеиновая кислота. И вот что важно: ДНК, имеющую форму кольца, находили только в бактериях. ДНК всех многоклеточных организмов имеет форму спирали.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Как изменить мир к лучшему
Как изменить мир к лучшему

Альберт Эйнштейн – самый известный ученый XX века, физик-теоретик, создатель теории относительности, лауреат Нобелевской премии по физике – был еще и крупнейшим общественным деятелем, писателем, автором около 150 книг и статей в области истории, философии, политики и т.д.В книгу, представленную вашему вниманию, вошли наиболее значительные публицистические произведения А. Эйнштейна. С присущей ему гениальностью автор подвергает глубокому анализу политико-социальную систему Запада, отмечая как ее достоинства, так и недостатки. Эйнштейн дает свое видение будущего мировой цивилизации и предлагает способы ее изменения к лучшему.

Альберт Эйнштейн

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Политика / Образование и наука / Документальное