Читаем Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. полностью

Из-за того, что длина струн столь мала, а натяжение так велико, в большинстве сценариев теории струн мы не найдем при доступных на ускорителях энергиях ни одного свидетельства в поддержку теории струн, даже если теория струн правильна. Физики-частичники, интересующиеся предсказанием экспериментальных результатов, вполне могут применять общепринятую четырехмерную квантовую теорию поля, игнорировать теорию струн и при этом все же получать правильные результаты. До тех пор пока вы изучаете только размеры, большие 10-33 см (или, эквивалентно, энергии ниже 1019 ГэВ), ничто из того, что мы рассматривали ранее относительно низкоэнергетических следствий физики частиц, не изменится. Полагая, что размер протона порядка 10-13 см, а максимальная энергия, достижимая на современных ускорителях, порядка тысячи ГэВ, можно спокойно делать ставку на то, что предсказаний физики частиц вполне достаточно.

Но даже если это так, у физиков-частичников, занимающиеся низкоэнергетическими явлениями, есть веские причины уделить внимание теории струн. Б этих теориях вводятся новые идеи, как математические, так и физические, которые никто ранее не рассматривал, например, браны и другие понятия, связанные с дополнительными измерениями. Даже в четырех измерениях теория струн проложила путь к углубленному пониманию суперсимметрии, квантовой теории поля и взаимодействий, которые могла бы содержать модель квантовой теории поля. И конечно, если теория струн действительно дает полностью согласованное квантово-механическое описание гравитации, это было бы потрясающим достижением. Все эти преимущества делают теорию струн весьма стоящей даже для тех, кто полностью сосредоточился на экспериментально доступных явлениях. Хотя обнаружить струны будет очень трудно (если вообще возможно), теоретические идеи, озаренные светом теории струн, могут иметь отношение к нашему миру. Вскоре мы увидим, как это может случиться.


Последствия революции

В 1984 году на пике «суперструнной революции» я была аспиранткой в Гарварде. Довольно скоро стало ясно, что в исследовательской работе у начинающего физика есть два пути. Он может признать теорию струн, следуя по стопам Эда Виттена и Дэвида Гросса, которые в то время работали в Принстоне. Или можно остаться физиком-частичником, имеющим более непосредственный контакт с экспериментальными результатами и работающим в команде под руководством Говарда Джорджи и Шелдона Глэшоу (оба в то время работали в Гарварде). Может показаться невероятным, что физики, интересовавшиеся одинаковыми проблемами, могли быть так разделены, но представления в двух лагерях о том, как достичь прогресса, были очень разными.

В Гарварде царило воодушевление по поводу физики частиц, и многие тамошние физики почти полностью отвергали теорию струн. В физике частиц и космологии оставались нерешенные вопросы — почему бы не ответить на них, прежде чем начать копаться на математическом минном поле, чем угрожала стать теория струн? Приемлемо ли для физики пытаться проникнуть в неизмеримые области? Когда имелось столько замечательных людей и множество интригующих идей о том, как расширить Стандартную модель физики частиц с помощью более традиционных методов, как-то не видно было особых причин бежать с корабля.

Однако были другие научные центры, где физики были убеждены, что все вопросы, касающиеся теории суперструн, будут вскоре разрешены, и что теория струн — это физика будущего (и настоящего). Теория суперструн находилась на ранних стадиях своего развития. Кое-кто верил, что если посвятить ей достаточное количество человеко-часов (а это были, в основном, муже-часы), теоретики-струнники смогут окончательно вывести всю известную физику. В работе 1985 года о гетеротической струне Гросс с коллегами писали: «Хотя остается еще много работы, представляется, что нет непреодолимых препятствий для того, чтобы вывести всю известную физику из… гетеротической струны»[133]. Теория струн обещала стать Теорией Всего Сущего. Принстон шел в авангарде этих идей.

Физики были настолько уверены, что теория струн была дорогой к будущему, что в отделе не осталось теоретиков в области физики частиц, не работавших над теорией струн, — ошибка, которую Принстону еще предстояло исправить.

Сегодня мы не можем сказать, являются ли проблемы, с которыми столкнулась теория, «непреодолимыми» или нет, но они, безусловно, требуют напряжения сил. На многие важные вопросы пока нет ответов. Обращение к нерешенным проблемам теории струн, по-видимому, требует математического аппарата или фундаментального нового подхода, которые далеко выходят за рамки того набора средств, который до сих пор был развит физиками и математиками.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже