Читаем Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. полностью

Т-дуальность применима в теории струн со свернутыми измерениями, потому что в пространстве-времени, компактифицированном в окружность, есть два разных типа замкнутых струн, и эти два типа взаимозаменяются, когда пространство с малым свернутым измерением заменяется на пространство с большим свернутым измерением. Первый тип замкнутых струн осциллирует, когда он движется в свернутом измерении подобно калуца-клейновским частицам, которые мы рассматривали в гл. 18. Другой тип наматывается на свернутое измерение. Он может сделать это раз, два, или любое число раз. И операции Т-дуальности, которые заменяют малое свернутое измерение на большое, взаимозаменяют эти два типа струн.

В действительности Т-дуальность была первым указанием на то, что браны должны существовать: без них в дуальной теории не было бы аналога открытых струн. Но если T-дуальность применима, и крошечное свернутое измерение дает те же физические следствия, что и огромное свернутое измерение, это могло бы означать, что, опять же, наше понятие «измерения» неадекватно.

Это так потому, что если вы захотите сделать радиус одного свернутого измерения бесконечно большим, Т-дуальное свернутое измерение будет окружностью нулевого размера — т. е. окружности вообще не будет. То есть бесконечное измерение в одной теории T-дуально теории, в которой на одно измерение меньше (поскольку окружность нулевого размера не считается измерением). Так T-дуальность тоже показывает, что два внешне разных пространства могут казаться имеющими разное число больших протяженных измерений и тем не менее приводить к тождественным физическим предсказаниям. Еще раз повторю, что понятие измерения неоднозначно.


III. Зеркальная симметрия

T-дуальность применима, когда измерение свернуто в окружность. Но еще более необычная симметрия, чем T-дуальность, есть зеркальная симметрия, которая иногда используется в теории струн, если шесть измерений свернуты в многообразие Калаби — Яу. Зеркальная симметрия говорит, что шесть измерений могут быть свернуты в два очень разных многообразия Калаби — Яу, и тем не менее получающаяся четырехмерная теория на больших расстояниях может быть одной и той же. Многообразие, получающееся в результате применения этой зеркальной симметрии к некоторому многообразию Калаби — Яу, может выглядеть совершенно иначе: оно может иметь другую форму, размер, скрученность или даже некоторое число дырок[182]. Тем не менее, если для некоторого многообразия Калаби — Яу существует зеркальное, то физическая теория, где шесть измерений свернуты в одно из двух многообразий, будет одна и та же. Поэтому и с зеркальными многообразиями две явно разных геометрии приводят к тем же самым предсказаниям.


IV. Матричная теория

Матричная теория, инструмент для изучения теории струн, дает еще более таинственные подсказки про измерения. Поверхностно, матричная теория выглядит как квантово-механическая теория, которая описывает поведение и взаимодействия D0-бран (точечноподобных бран), движущихся в десяти измерениях. Но хотя теория явно не содержит гравитацию, D0-браны действуют как гравитоны. Так что в конце теория получается содержащей гравитационное взаимодействие, хотя гравитон внешне отсутствует.

Кроме того, теория D0-бран напоминает супергравитацию в одиннадцати измерениях, а не в десяти. То есть матричная модель выглядит так, как если бы она содержала супергравитацию в пространстве с размерностью на единицу больше, чем в исходной теории. Эта подсказка (наряду с другими математическими свидетельствами) привела теоретиков-струнников к убеждению, что матричная теория эквивалентна М-теории, которая также содержит одиннадцатимерную супергравитацию.

Одна особенно странная черта матричной теории была замечена Эдвардом Виттеном и состоит в том, что когда D0-браны подходят слишком близко друг к другу, нельзя точно знать, где они находятся. Как сказали Том Бэнкс, Уилли Фишлер, Стив Шенкер и Ленни Сасскинд — создатели матричной теории — «таким образом, для малых расстояний не существует представления конфигурационного пространства и терминах обычного положения»[183]. То есть положение D0-браны больше не является имеющей смысл математической величиной, когда вы пытаетесь определить его слишком точно.

Такие странные свойства делают матричную теорию мучительно трудной для изучения, и в настоящее время очень трудно использовать ее для вычислений. Проблема состоит в том, что, подобно другим теориям, содержащим сильно взаимодействующие объекты, никто еще не нашел способа решить многие важнейшие вопросы, которые помогут нам понять, что же в ней действительно происходит. Все же, из-за возникновения дополнительного измерения и исчезновения измерений, когда D0-браны подходят слишком близко друг к другу, матричная теория дает еще один повод думать о том, что же в действительности значат измерения.


О чем думать?

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже