Теоретики, занимающиеся струнами, часто предполагают, как это уже сделал Клейн, что свернутые измерения имеют размеры, равные планковской длине 10-33
см. Компактные измерения планковских размеров были бы необычайно хорошо спрятаны. Почти наверняка у нас нет способов обнаружить нечто столь малое. Поэтому весьма вероятно, что дополнительные измерения планковских размеров не оставляют никаких видимых следов своего существования. Следовательно, даже если мы живем во вселенной с дополнительными измерениями планковских размеров, мы будем регистрировать только три обычных измерения. Вселенная может иметь много таких крохотных измерений, но может статься, что мы никогда не достигнем достаточной разрешающей способности, чтобы их обнаружить.Хорошо иметь наглядное, описательное объяснение того, почему дополнительные измерения прячутся после компактификации или сворачивания до очень маленьких размеров. Но не мешало бы проверить, что законы физики согласуются с этими интуитивными представлениями.
Посмотрим на ньютоновский закон для силы тяготения, который в законченном виде был предложен Ньютоном в XVII веке. Этот закон говорит нам, каким образом сила тяготения зависит от расстояния между двумя массивными телами[22]
. Закон Ньютона известен какТот вид зависимости силы тяготения от расстояния, который заложен в ньютоновском законе обратных квадратов, тесно связан с числом пространственных измерений. Причина этого в том, что число измерений определяет, насколько быстро рассеивается гравитация при распространении в пространстве.
Подумаем над этой связью, что очень пригодится нам позднее, когда мы будем рассматривать дополнительные измерения. Для этого представив себе водопровод, вода из которого может быть направлена через шланг или через разбрызгиватель. Предположим, что через шланг и через разбрызгиватель протекает одинаковое количество воды и этой водой нужно полить определенный цветок в саду (рис. 20). Когда вода идет по шлангу, направленному на цветок, этот цветок получит всю воду. Расстояние от начала шланга до насадки, направленной на цветок, несущественно, так как вся вода должна в конце концов дойти до цветка независимо от того, насколько далеко находится шланг.
Теперь представим, что то же количество воды пропускается через разбрызгиватель, который одновременно поливает много цветков. Иначе говоря, разбрызгиватель подает воду по окружности, так что она попадает на все цветки, находящиеся на определенном расстоянии. Так как теперь вода распределяется среди всего, что есть на данном расстоянии, выбранный цветок будет получать не всю воду. Более того, чем дальше цветок от источника, тем больше растений будет поливать разбрызгиватель, и вода будет распределена по большей территории (рис. 21). Это произойдет потому, что вы можете полить больше растений на окружности длиной в три метра, чем на окружности длиной в один метр. Поскольку вода разбрызгивается шире, более далекий цветок получает меньше воды.
Аналогично, все, что равномерно распределяется более чем в одном направлении, будет оказывать меньшее влияние на любую конкретную вещь, находящуюся на большем расстоянии, будь это цветок или, как мы вскоре увидим, тело, на которое действует сила тяготения. Гравитация, как вода, чем дальше, тем шире распределяется.
Этот пример позволяет также увидеть, почему распределение так сильно зависит от числа измерений, в которых распространяется вода (или тяготение).
Вода из двумерного разбрызгивателя рассеивается с увеличением расстояния, в отличие от воды из одномерного шланга, которая вообще не рассеивается. Представьте теперь разбрызгиватель, распределяющий воду по поверхности сферы, а не только по окружности. (Такой разбрызгиватель напоминал бы нечто вроде созревшего одуванчика.) В этом случае вода будет рассеиваться с расстоянием значительно быстрее.