Читаем Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. полностью

Специальная теория относительности важна не только потому, что она привела к выводам, существенно отклоняющимся от классической физики, но и потому, что она оказалась существенной для развития общей теории относительности и квантовой теории поля, играющих важную роль в новейших исследованиях. Поскольку при дальнейшем обсуждении физики частиц и моделей с дополнительными измерениями я не хочу использовать конкретные предсказания специальной теории относительности, я не поддамся искушению заняться изучением всех поразительных следствий этой теории, например, почему одновременность зависит от того, движется ли наблюдатель или покоится, и как размеры движущихся тел отличаются от размеров покоящихся тел. Вместо этого мы погрузимся в другое интереснейшее исследование, а именно, общую теорию относительности, которая будет важна позднее, когда мы начнем рассматривать теорию струн и дополнительные измерения.


Принцип эквивалентности: начинается общая теория относительности

Специальная теория относительности была опубликована Эйнштейном в 1905 году. В 1907 году, работая над статьей, подводившей итог недавним исследованиям по теории относительности, Эйнштейн задался вопросом, применима ли теория ко всем ситуациям. Он обратил внимание на два главных упущения. С одной стороны, законы физики выглядели одинаково только в некоторых специальных инерциальных системах отсчета, которые двигались с постоянными скоростями относительно друг друга.

В специальной теории относительности эти инерциальные системы занимали привилегированное положение. Теория отбрасывала любую систему отсчета, которая двигалась с ускорением. Когда вы нажимаете педаль газа своего автомобиля, вы уже не находитесь в одной из специальных систем отсчета, в которых применимы законы специальной теории относительности. Отсюда и слово «специальная» в специальной теории относительности: «специальные» инерциальные системы являются лишь малым подмножеством всех возможных систем отсчета. Для человека, убежденного в том, что ни одна система отсчета ничем не лучше другой, тот факт, что теория выделяет инерциальные системы отсчета, представляет большую проблему.

Второе опасение Эйнштейна касалось гравитации. Хотя он представлял себе, как в некоторых ситуациях тела реагируют на тяготение, он еще не мог предложить формул для описания самого гравитационного поля. В некоторых простых случаях вид закона для силы тяготения был известен, однако Эйнштейн все еще не мог вывести выражение для поля в случае произвольного распределения материи.

В период между 1905 и 1915 годами, иногда доходя до полного изнеможения, Эйнштейн исследовал эти проблемы. Результатом явилась общая теория относительности. В основу новой теории он поместил принцип эквивалентности, утверждавший, что эффекты, вызванные ускорением, невозможно отличить от эффектов гравитации. Все законы физики должны выглядеть одинаково как для ускоренного наблюдателя, так и для неподвижного наблюдателя, помещенного в гравитационное поле, ускоряющее все тела в неподвижной системе отсчета с ускорением той же величины, но противоположного направления по сравнению с ускорением исходного наблюдателя. Иными словами, у вас нет способа отличить постоянное ускорение от состояния покоя в гравитационном поле. Согласно принципу эквивалентности, не существует измерения, которое могло бы отличить эти две ситуации. Наблюдатель никогда не узнает, в какой ситуации он находится. Принцип эквивалентности вытекает из эквивалентности инертной и гравитационной масс, двух величин, которые в принципе могли бы отличаться друг от друга. Инертная масса определяет, каким образом тело реагирует на любую силу, т. е. какое ускорение приобретет тело в результате приложения данной силы. Роль инертной массы следует из второго закона движения Ньютона F = mа, утверждающего, что если вы приложите силу величиной F к телу массой m, то оно приобретет ускорение а. Знаменитый второй закон Ньютона утверждает, что данная сила сообщает меньшее ускорение телу с большей инертной массой, что, вероятно, знакомо вам из повседневной жизни. (Если вы толкнете скамеечку для ног, она отлетит дальше и быстрее, чем если бы вы толкнули с той же силой большой рояль.) Обратим внимание на то, что этот закон применим для сил любого рода, например, для электромагнетизма. Он может применяться в ситуациях, не имеющих никакого отношения к гравитации.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже