Читаем Закрученные пассажи полностью

Когда я училась в средней школе, я провела лето в математическом лагере (что оказалось намного более интересным, чем вы можете подумать), и там нам показали киноверсию «Флатландии»[11]. В конце диктор с очаровательным британским акцентом безуспешно пытается указать на недоступное флатландцам третье измерение, говоря: «Наверх, а не на север!» К сожалению, мы испытаем ту же неудовлетворенность, если попытаемся указать проход к четвертому пространственному измерению. Но точно так же, как флатландцы не видели или не перемещались сквозь третье измерение, хотя оно и существует в истории Эбботта, тот факт, что мы никогда не видели другого измерения, не означает, что его нет. Итак, хотя мы никогда до сих пор не наблюдали такое измерение и не путешествовали сквозь него, лейтмотивом всей книги «Закрученные пассажи» будет фраза: «Не на север, а вперед вдоль пассажа!» Кто знает, что существует из того, чего мы еще не видели?


Три из двух

В оставшейся части этой главы, вместо того чтобы размышлять о пространствах, имеющих более трех измерений, я поговорю о том, как с помощью наших ограниченных зрительных возможностей мы собираемся представлять и рисовать три измерения, используя двумерные образы. Понимание того, как мы совершаем этот пассаж от двумерных образов к трехмерной реальности, пригодится позднее, когда мы будем интерпретировать малоразмерные «картинки» многомерных миров. Относитесь к этому разделу как к разминочному упражнению, для того чтобы приучить ваш мозг к дополнительным измерениям. Было бы неплохо помнить, что в обычной жизни вы все время имеете дело с размерностью. На самом деле все это не так уж незнакомо.

Часто все, что мы можем видеть, — это кусочки поверхностей, которые обрамляют вещи. Хотя эта внешняя оболочка и изгибается в трехмерном пространстве, она имеет два измерения, так как для определения положения любой точки на ней нужно задать два числа. Мы приходим к выводу, что поверхность не трехмерна, так как у нее нет толщины.

Смотря на картины, экраны кинотеатров, мониторы компьютеров или рисунки в этой книге, мы, вообще говоря, смотрим не на трехмерные, а на двумерные изображения. Но тем не менее мы можем восстановить изображенную трехмерную реальность.

Для построения трех измерений мы можем использовать двумерную информацию. Этот процесс включает урезание информации при создании двумерных представлений и одновременно попытку сохранить достаточно информации для воспроизводства важных элементов исходного объекта. Обратимся к часто используемым методам сведения объектов более высокой размерности к меньшему числу измерений: нарезка слоями, проектирование, голография и иногда просто пренебрежение размерностью, — и обратному процессу восстановления тех трехмерных объектов, которые они представляют.

Наименее сложный способ заглянуть за поверхность — сделать тонкие слои. Каждый слой двумерен, но комбинация слоев образует реальный трехмерный объект. Например, когда вы покупаете ветчину в магазине, трехмерный кусок окорока быстро нарезают на много двумерных ломтей[12]. Складывая все ломти, можно реконструировать форму всего трехмерного куска.

Эта книга трехмерна. Однако ее страницы имеют только два измерения. Объединение двумерных страниц образует книгу[13]. Можно многими разными способами проиллюстрировать это объединение. Один способ показан на рис. 8, на котором мы смотрим на книгу сбоку. На этом рисунке мы опять играем с размерностью, так как каждая линия представляет страницу. Поскольку все мы знаем, что линии соответствуют двумерным страницам, эта иллюстрация всем ясна. Позднее мы используем аналогичный подход, чтобы изобразить объекты в многомерных мирах.

Разрезание на слои — лишь один из способов заменить высшие измерения более низкими. Другим способом является проектирование — технический термин, заимствованный из геометрии. Проектирование содержит строгие предписания для создания образа объекта, имеющего меньшее число измерений. Тень на стене — один из примеров двумерной проекции трехмерного объекта. На рис. 9 показано, каким образом теряется информация, когда мы (или кролики) осуществляем проектирование. Точки на тени определяются только двумя координатами, лево — право или вверх — вниз на стене. Однако проектируемый объект имеет третье пространственное измерение, которое не сохраняется в проекции.

Простейший способ осуществить проектирование состоит в том, чтобы отбросить одно измерение. Например, на рис. 10 показан куб в трех измерениях, спроектированный на два измерения. Проекция куба может иметь много форм, простейшая из которых есть квадрат.

Возвращаясь к предыдущим примерам графиков Икара и Афины, мы можем построить двумерный график Икара, если пренебрежем его вождением спортивных автомобилей. На самом деле нам не важно, сколько сов выращивает Афина, поэтому мы можем построить не пятимерный, а четырехмерный график. Пренебрежение совами Афины и есть проектирование.

Перейти на страницу:

Похожие книги

Юрий Олеша и Всеволод Мейерхольд в работе над спектаклем «Список благодеяний»
Юрий Олеша и Всеволод Мейерхольд в работе над спектаклем «Список благодеяний»

Работа над пьесой и спектаклем «Список благодеяний» Ю. Олеши и Вс. Мейерхольда пришлась на годы «великого перелома» (1929–1931). В книге рассказана история замысла Олеши и многочисленные цензурные приключения вещи, в результате которых смысл пьесы существенно изменился. Важнейшую часть книги составляют обнаруженные в архиве Олеши черновые варианты и ранняя редакция «Списка» (первоначально «Исповедь»), а также уникальные материалы архива Мейерхольда, дающие возможность оценить новаторство его режиссерской технологии. Публикуются также стенограммы общественных диспутов вокруг «Списка благодеяний», накал которых сравним со спорами в связи с «Днями Турбиных» М. А. Булгакова во МХАТе. Совместная работа двух замечательных художников позволяет автору коснуться ряда центральных мировоззренческих вопросов российской интеллигенции на рубеже эпох.

Виолетта Владимировна Гудкова

Драматургия / Критика / Научная литература / Стихи и поэзия / Документальное