Всё перечисленное выше — это физическая защита. Существуют, однако, концепты и защиты магической — с помощью магнитного поля, окружённого тонким слоем плазмы. Соль в том, что нагревается аппарат от трения о воздух, тогда как такая конструкция «принимает удар на себя», и обшивка корабля остаётся при своих. Разумеется, определённая термозащита на ней всё равно должна быть, однако это уже гораздо проще, чем описанные ранее плитки.
2. Несущая обшивка.
Одна из наиболее популярных сегодня и, думаю, в ближайшие пару тысячелетий — это сэндвич-панель. Суть её элементарна: это две пластины из прочного материала, между которыми расположена прослойка — чаще всего это соты или очень лёгкий материал вроде пенопласта (не того, в который упаковывают телевизоры и прочую технику, а другого, технического). Получается, что при почти той же массе панель становится гораздо толще и, соответственно, более жёсткой и прочной на изгиб.Изнутри к ней крепятся стрингеры, связи и прочая ерунда, так что одной только сэндвич-панелью не отделаться. Кроме того, сама панель тоже может быть двуслойной: например, командные модули «Аполлонов» имели внешнюю стенку из стали, потому что алюминий имеет меньшую температуру плавления, чем сталь, а при возвращении на Землю аппарат сильно нагревается об атмосферу. Стенка же самой кабины была сделана из алюминиевых сотовых панелей, а между ними располагался слой теплоизолирующего волокна.
На фоне этого крайне забавно смотрятся пассажи лунных конспиролухов про «тонкие, как фольга» стенки «Аполлонов».
3. Противометеоритная защита.
Для «Шаттла» или «Бурана» она не особо нужна, а вот Звезде Смерти ещё как пригодилась бы. Но тут есть загвоздка: от крупных объектов МКС защищается манёврами, Звезда Смерти такое не совершит — она слишком большая и тяжёлая. Скорее всего, удобней будет сбивать такие объекты на подлёте, изменяя их траекторию. А вот мелкие… Противометеоритная защита МКС сделана из всё тех же композитных материалов, однако она может не защитить уже от объектов размером с фасолину, а более крупные метеориты почти гарантированно пробьют её. Усилить защиту ещё парой слоёв — решение спорное, в первую очередь потому, что это утяжелит конструкцию, а эффективность не гарантируется. Другими словами, Звезда Смерти будет очень уязвима для обычных кинетических снарядов — достаточно разогнаться до скорости 10–12 км/сек относительно станции и высыпать в космос ведро гаек, чтобы на корпус обрушился град пуль, перед которым крупнокалиберные пулемёты типа «Утёса» — жалкая пневматика.Разумеется, исследования в этом направлении не прекращаются. Однако большого прогресса пока не видно.
4. Противорадиационная защита.
Тут надо сначала определиться, от чего мы защищаемся. Радиационные пояса Земли состоят из альфа- и бета-частиц, которые обладают высокой энергией, но плохого проникают сквозь вещество. Если заглянуть в документ NASA, где описана противорадиационная защита «Аполлонов», то выяснится, что американцы не особо парились по поводу каких-то дополнительных мер в этом направлении — они пролетали по самому краю основных «горячих» зон поясов, а описанная выше обшивка более чем эффективно защищает от тяжёлых частиц. Любимый авторами свинец нужен для защита от гамма-излучения, то есть космических лучей. В коротких полётах на него можно не обращать внимания (хотя дозы экипаж всё равно получит весьма заметные), а вот в длительных уже приходится. И тут возникает определённая сложность — экранировать гамма-излучение очень трудно. Во время мощных вспышек на Солнце экипаж МКС укрывается у емкостей с водой, которая неплохо задерживает радиацию, однако оснастить весь корабль дополнительной прослойкой водяной защиты — это нечто совсем уже фантастическое.Хотя в отношении Звезды Смерти, где люди живут постоянно, а масса уже не играет большую роль, не так уж и совсем. Чтобы сделать защиту, аналогичную земной атмосфере, потребовалось бы создать прослойку воды толщиной 10 метров — если мы говорим о станции диаметром в километр, это не так уж много.
Кроме того, можно создать магнитное поле. Об этом думали ещё во время первых полётов, но затея оказалась слишком уж фантастичной. Однако сейчас уже не очень: учёные додумались использовать не просто магнитное поле, а комбинацию из плазменного слоя, электрического и магнитного полей, так что в результате корабль окружается магнитоплазменным пузырём, поглощающим заряженные частицы. Примерно так:
Обшивкой назвать эту конструкцию сложно, но в любом случае она — такая же часть корабля.
В 99 % случаев схема космического истребителя (да и дредноута тоже) напоминает схему классического реактивного самолёта, то есть двигатель расположен в хвосте и обладает только одним вектором направления тяги — вперёд. Вместо тысячи слов: