Из современных подобных проектов, которые подают хоть какие-то признаки жизни, можно назвать Dream Chaser и X-37. Первый должен совершить реальный полёт с грузом в 2020, второй уже слетал пять раз и вроде бы успешно, но это не грузовой корабль, а летающая лаборатория, фактически многоразовый исследовательский спутник. О стоимости коммерческих запусков говорить пока не приходится.
Ну а космолёт — это то же самое, только без ракеты-носителя. Взлетел — полетал на орбите — спустился. К сожалению, ни один из проектов пока реализован не был, но разработки ведутся. Конечно может показаться, что космолёт не мене фантастичен, чем аппарат с лазерным двигателем или космический лифт, но это не совсем верно. Он лишь требует нового типа двигателя. Таким вполне может выступить штука под названием Synergistic Air-Breathing Rocket Engine (SABRE), в своей фантастике я перевожу это как «синергетический двигатель». Разрабатывался он именно для доставки груза на орбиту без промежуточных ступеней. В качестве рабочего тела SABRE использует обычный воздух, по сути являясь комбинацией турбокомпрессора с охлаждающей установкой, которая на высоких скоростях охлаждает поступающий извне раскалённый воздух и воспламеняет его в камере сгорания вместе с жидким водородом. После достижения верхних слоёв атмосферы он переключается на безвоздушный режим. Для гиперзвуковых аппаратов, способных домчать вас за пару часов из Лондона в Лос-Анджелес, или для упоминавшихся выше космолётов на сегодня это буквально луч света в тёмном царстве.
В целом, однако, перспективы печальные. Из совсем уж фантастических проектов ни один не находится даже в стадии разработки — только концепты. Остальные — разве что прототипы, успешных запусков не продемонстрировал пока ни один. Именно поэтому, например, в моей НФ-вселенной люди по-прежнему летают на пусть усовершенствованных, но по-прежнему тех же самых химических ракетных двигателях: лично я считаю, что альтернативы им не будет ещё очень, очень, очень долго. И не факт, что будет когда-либо вообще.
Как летать близко
Итак, вы сумели разорвать оковы тяготения, парите на орбите, любуетесь космосом… и тут сволочь-капитан врывается в кабину пилота, орёт на вас трёхэтажным матом и требует немедленно запускать двигатели, потому что пассажиры, понимаешь, заплатили за круиз по всегалактически известным садам Альфа Центавры, а до них ещё долететь надо. Что делать? Только грустно пожать плечами, бросить взгляд на затянутую в облегающий костюмчик стюардессу и начать полёт.
В фантастике, понятное дело, вы домчите любителей цветочков до места очень быстро. А в реальности?
А реальность… ну вы поняли.
Сначала давайте представим, что всегалактически известные сады Альфа Центавры расположены на Марсе, и летят наши туристы именно туда. Всё-таки долететь куда-то в пределах одной звёздной системы несколько проще, чем отправляться к другому солнцу.
Концептов именно космических двигателей, т. е. изначально предназначенных для перемещения в безвоздушном пространстве, на сегодня имеется немало, и, в отличие от предыдущей главы, тут дела всё-таки обстоят чуть получше: есть успешно испытанные прототипы, а кое-что даже имеет возможность выбраться за их пределы. Все эти интересные штуки, однако, не позволят долететь к Альфа Центавре — но об этом позже.
Почему бы не использовать старый добрый химический двигатель, раз уж мы на нём взлетели? Тут надо сделать небольшое отступление в дебри теории. Любой ракетный двигатель характеризуется таким параметром, как удельный импульс. Честно говоря, его определение на википедии кажется лично мне на редкость таинственным для непосвящённого: какое-то там отношение количества движения к расходу топлива… хотя это характерно для физики. Долой канцеляриты: удельный импульс — это показатель эффективности ракетного двигателя. Чем он выше, тем меньше топлива аппарат затратит на увеличение своей скорости. Замечу, это касается только расхода — и больше ничего.
Традиционные химические двигатели на всяких нитрометанах и гидразинах очень мощны, но тратят на разгон очень много топлива. Это приемлемо, если мы хотим взлететь на орбиту, но для набора скорости вне её — уже не очень. Ракете попросту не хватит горючего, чтобы достичь высоких скоростей.
Тут-то и приходят на помощь новые разработки.
Как несложно (наверное) догадаться, это такой двигатель, который ускоряет ракету за счёт электроэнергии.
Однако в космосе это несколько сложнее, чем на земле, где можно поставить на машину асинхронный электродвигатель и не париться, используя для разгона сцепление колеса с дорогой, а крутящий момент получая с помощью вращающегося магнитного поля. В космосе единственным доступным способом остаётся реактивное движение, таким образом, общий принцип ракетного электрического двигателя построен на разгоне рабочего тела с помощью магнитного поля, получая таким образом ускорение.