Читаем Занимательная астрофизика полностью

Одно из существенных различий между теориями тяготения Ньютона и Эйнштейна состоит в том, что гравитационные силы определяются в этих теориях различными формулами. Формула, выражающая закон тяготения Ньютона, общеизвестна:

где G — постоянная тяготения, Mm — массы взаимодействующих тел, a R — расстояние между их центрами. Именно с такой силой, например, звезда массы М, с точки зрения классической теории тяготения, притягивает тело массы m, расположенное на ее поверхности.

В теории тяготения Эйнштейна сила тяготения определяется иной формулой:

где с — скорость света в пустоте.

Различие этих формул определяет и разный характер поведения силы тяготения в тех или иных ситуациях. Рассмотрим, например, случай, когда звезда массы М сжимается в точку, т. е. расстояние между ее центром и центром тела массы т сокращается.

Согласно формуле (4), сила тяготения при этом будет соответственно расти, оставаясь в то же время конечной при любом конечном расстоянии.

Иным будет поведение силы тяготения, рассчитанной по формуле (5). При определенной величине R=rg выражение под корнем в знаменателе обращается в нуль, а Fэ — в бесконечность.

Подсчитаем величину rg:

Эта величина получила название гравитационного радиуса. Если R намного больше, чем rg, то выражение под корнем в знаменателе формулы (5) мало отличается от единицы, так как с2 — величина очень большая и дробь пренебрежимо мала. В этом случае формула (5) практически совпадает с формулой (4). Однако по мере того, как R приближается к rg, различие становится все более существенным. И при R = rg сила тяготения, как мы уже знаем, становится бесконечно большой.

Можно подсчитать, что для массы Солнца гравитационный радиус равен 3 км, для массы Земли — 0,9 см; а для массы нашей Галактики — 1011 км, в то время как действительные радиусы этих объектов соответственно равны 700 тыс. км, 6400 км и 9·1017 км. Таким образом, размеры «обыкновенных» космических объектов — планет, звезд, галактик, как правило, в миллионы и миллиарды раз больше их гравитационных радиусов. Отсюда, между прочим, следует, что для небесных тел, сходных с Землей или Солнцем, эффекты общей теории относительности (ОТО) весьма невелики, и практически их можно не принимать во внимание.

Отметим одно любопытное обстоятельство. Хотя гравитационные радиусы Земли и Солнца весьма заметно отличаются от их реальных радиусов, тем не менее они имеют конечные значения. Возникает вопрос: чему равна сила тяготения Fэ на расстояниях, еще меньших, чем rg? Ведь уже при rg она равна бесконечности. Все дело в том, что в наших расчетах мы вычисляли силу тяготения, действующую на покоящееся «пробное» тело массы М. В действительности же сфера радиуса rg — так называемая сфера Шварцшильда — обладает тем свойством, что любое тело, оказавшееся на ее поверхности или внутри нее, не может оставаться неподвижным — оно должно падать внутрь…

Следовательно, если любое тело окажется на сфере Шварцшильда (иногда ее называют «горизонтом черной дыры»), то оно будет двигаться только внутрь черной дыры.

Свойства невращающихся черных дыр, образовавшихся в результате коллапса, зависят только от двух параметров: массы и электрического заряда. Все остальные возможные различия, связанные с распределением коллапсирующей массы в пространстве, вещественным составом и т. п., в процессе коллапса полностью исчезают. Поэтому по состоянию такой черной дыры в данный момент невозможно восстановить ее предысторию.

Рассмотрим ситуацию, которую нередко используют авторы научно-фантастических произведений в качестве «физической предпосылки» для развития событий. Звездолет неосторожно приблизился на критическое расстояние к черной дыре, и его «затянуло» под сферу Шварцшильда. Может ли в такой ситуации экипаж предпринять какие-либо эффективные меры для своего спасения? К сожалению, таких мер не существует. И не более чем через 10-5 (М/Мс) секунд (где М — масса черной дыры, а Мс — масса Солнца) звездолет попадет в центр черной дыры.

Более того, любая попытка с помощью двигателей затормозить падение приведет к противоположному результату. Дело в том, что согласно специальной теории относительности ускоренное движение приводит к так называемому лоренцеву замедлению времени. И по часам экипажа звездолет достигнет сингулярности за еще более короткий промежуток времени.

А может ли какое-либо тело обращаться вокруг черной дыры по окружности? Для этого, очевидно, необходимо, чтобы падение тела к центру черной дыры под действием ее притяжения в каждый данный момент компенсировалось соответствующим его перемещением в направлении, перпендикулярном радиусу орбиты. Как показывают расчеты, для обеспечения кругового движения на расстоянии, равном 3rg от центра черной дыры, тело должно обладать орбитальной скоростью, равной половине скорости света, а на расстоянии, равном 1,5rg, орбитальная скорость должна равняться световой.

Перейти на страницу:

Все книги серии Проблемы науки и технического прогресса

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия
Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия

Известный физик-теоретик, доктор философии и популяризатор науки дает собственный прогноз о нашем будущем. Автор этой книги уверен: совсем скоро людям придется покинуть родную планету и отправиться в космос. Потому что грядет глобальный кризис, несущий угрозу всему живому на Земле…По мнению Митио Каку, людям предстоит стать «двухпланетным видом», как когда-то метко выразился астрофизик Карл Саган. В этой книге ученый рассматривает проблемы, ждущие нас во время освоения космоса, а также возможные пути их решения.Вы узнаете, как планируется колонизировать Марс, что уже сделано для покорения этой планеты, прочтете о новейших достижениях в сфере строительства звездолетов. Ознакомитесь с прогнозом ученого о том, могут ли люди обрести бессмертие. Откроете, как в научном мире относятся к возможности существования внеземных цивилизаций. И вместе с автором поразмышляете над тем, что произойдет, когда человечество сможет выйти за пределы Вселенной…

Митио Каку , Мичио Каку

Астрономия и Космос / Педагогика / Образование и наука