Читаем Занимательная биология полностью

Джон фон Нейман в книге «Вычислительная машина и мозг» пишет, что она должна быть равна в таком случае 280 000 000 000 000 000 000 битов информаций. Двумстам восьмидесяти квинтильонам! Для записи одного бита нужен один двухпозиционный переключатель. Роль переключателей в мозгу играют нейроны. Предполагая, что 10 миллиардов из них принимают участие в сохранении памяти, получим, что на каждый нейрон приходится объем информации, эквивалентный приблизительно 30 миллиардам битов!

По мнению Вулдриджа, однако, вычисления эти сильно завышены. Наверное, далеко не все из того, что происходило с нами, запечатлевается в мозгу, считает он.

Несмотря на то, что пациенты Пенфилда очень отчетливо и реально видели себя в прошлом, вряд ли картины эти воспроизводились в их мозгу с фотографической точностью.

Пенфилд сам писал о таких больных: «Здесь отсутствуют ощущения, которых он не замечал, разговоры, к которым не прислушивался».

«Вероятно, в памяти, — говорит Вулдридж, — регистрируется лишь небольшая доля переживаемых нами событий и даже в тех событиях, которые действительно помним, мы выделяем и фиксируем лишь ничтожную часть первоначальных сенсорных данных».

А вот косвенные доказательства правоты этой точки зрения.

Обыкновенный тест на внимание. Вам показывают десятка два предметов, потом их убирают и просят назвать все, что вы только что видели. Человек средних способностей может сразу запомнить и описать не больше 5–10 предметов.

Ученые, имеющие дело с вычислительными машинами, называют эти предметы информационными объектами. Каждый такой объект заключает в себе приблизительно 15 битов информации. Стало быть, общая информация, с которой человек одновременно может иметь дело: 75–150 битов.

Такие же психологические опыты показали, что количество информации, которое мозг способен воспринять не бессознательно, а сохраняя хотя бы недолго в памяти, при самых оптимальных условиях равно 25 битам в секунду.

Производя дальнейшие расчеты с этой реальной величиной, регистрирующей работы мозга, получим, что нормальная, «битовая» емкость памяти должна равняться 50 миллиардам битов. А это соответствует 5 битам или двухпозиционным переключателям на нейрон.

Вместо 30 миллиардов у фон Неймана!

Где живет наша память?

Теперь о механизмах образования самой памяти.

Некоторые ученые считают, что в этом «виноваты» какие-то физико-химические сдвиги, происходящие в телах нейронов. Другие (и их большинство) говорят: все дело в синапсах. Напомню, что синапс — это входная «клемма» нейрона: место соединения с ним отростков (аксонов) других нервных клеток. На теле нейрона и на его дендритах синапсов иногда бывает до тысячи!

Если память хранят синапсы, то понятно, как мозгу удается записывать такую колоссальную информацию. Даже самые заниженные расчеты убеждают, что одним нейронам это не под силу.

Еще больше увеличиваются возможности записывающего устройства мозга, если принять точку зрения профессора Эйди из Калифорнийского университета в Лос-Анжелосе. Он считает, что в образовании следов принимает участие и глия — материал, которым заполнены в мозгу все промежутки между нейронами. Глиальные клетки, «запоминая», изменяют, по-видимому, свои электрические свойства, в частности сопротивление.

А совсем недавно появились работы, которые доказывают, что в образовании и хранении следов памяти принимает участие РНК — рибонуклеиновая кислота.

У плоских червей планарий вырабатывали несложные условные рефлексы. Стало быть, обучали их. При этом выяснилось, что после обучения в нервных клетках червей стало больше РНК. Потом «ученых» червей скормили червям-«неучам». И вдруг у «неучей» без всякого обучения появились «привычки» съеденных приятелей.

С другими обученными планариями поступили не лучше. Каждую разрезали на несколько частей. Правда, для червей это не очень страшно: через некоторое время из каждого кусочка вырастает новый червяк. Как говорят ученые, кусочки эти регенерируют. Так вот, регенерировавшие части планарий продолжали сохранять все «привычки» своих целых, так сказать, основоположников.

То, что в сохранении рефлексов здесь действительно была замешана РНК, доказали опыты. Регенерирующие половинки «ученых» планарий выращивали в среде, содержащей рибонуклеазу. Рибонуклеаза — это фермент, который разрушает РНК. Нетрудно сообразить: если обучение связано с РНК, то планарии и их половинки «забудут» все, чему научились, как только РНК будет разрушена. Так и произошло. Рибонуклеаза разрушила рибонуклеиновую кислоту в нервных клетках планарий, и они потеряли все приобретенные «привычки».

В общих чертах участие РНК в сохранении памяти представляют так. Под влиянием какого-то раздражения в протоплазме нейрона изменяется «архитектура» молекулы РНК. Она становится, так сказать, «специализированной».

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже