Действительно, люди могут вести себя рационально при принятии широкого круга решений, включая поступление в вузы или устройство на работу, участие в политических выборах и даже заключении брака. При этом рациональность, конечно, должна восприниматься в широком смысле, не только как корыстное эгоистичное поведение, максимизирующее денежные доходы. Модель рационального поведения работает и в случае альтруизма, стремления улучшить жизнь окружающих людей или общества в целом. Важно лишь, чтобы мы могли угадать цель, которую преследует индивид, или чтобы такая цель была.
В этом и заключается принцип экономического империализма, применяющего экономические (а на деле теоретико-игровые) методы к широкому кругу социальных проблем – анализу международных конфликтов, конструированию реформ, формированию общественного мнения. Но сегодня мы коснемся всего одной темы – темы вечной любви и стабильных браков.
Представим себе высокогорное село, в котором проживает
Это означает, что нужен алгоритм, дающий разбиение на пары, при котором нельзя, разбив и перемешав одну или две из них, сделать новую пару более счастливой.
Данную задачу решили Дэвид Гейл и Ллойд Шепли в 1962 г. Они доказали, что, как это ни удивительно, стабильное разбиение существует всегда и, более того, продемонстрировали, как к нему можно прийти с помощью очень простого алгоритма.
Ллойд Шепли, наверное, главный классик кооперативной теории игр. При этом он приложил руку не только к механизмам справедливого распределения доходов, но и к такой не денежной проблематике, как правильная организация браков. Более того, именно за эту задачу он в 2012 году (спустя ровно полвека после ее решения) получил Нобелевскую премию по экономике. Конечно же, дело не только и не столько в матримониальных процессах. Есть множество иных сфер приложения построенных алгоритмов, и о них мы, несомненно, еще поговорим. Но именно на примере любовных отношений нагляднее всего продемонстрировать проблему, которая по-английски называется словом «мэтчинг», а на русский лучше, чем «паросочетание» или «соответствие» (что отражает смысл далеко не в полном объеме), к сожалению, не переводится.
7.1.2. Постановка задачи о марьяжах
Итак, как и было сказано в предыдущем параграфе, пусть имеются два множества элементов – парни и девушки. Для каждого из них существует определенная система приоритетов в выборе партнера. То есть каждый парень может ранжировать всех девушек от самой любимой через компромиссные варианты до самой непривлекательной. Кстати, где-то может проходить нулевая черта, ниже которой парень вообще не захочет жениться, и никакая девушка, стоящая ниже, не имеет шансов стать его женой. Аналогично, каждая девушка в состоянии ранжировать всех парней на деревне, от первого до последнего, с той же оговоркой про одиночество.
Например, предпочтения могут выглядеть следующим образом (рис. 7.1):
Рис. 7.1.
Пример предпочтений нескольких молодых людей и девушекЭто означает, что Петя влюблен в Веру, но, если этот сценарий окажется нереалистичным, он в принципе готов жениться в порядке убывания предпочтений на многих девушках – от Нади до Любы. В то же время, с его точки зрения, лучше навечно остаться холостяком, чем провести жизнь с Машей, Глашей и т. д. Любимая девушка Васи – Маша, но и у него есть некоторое число «запасных вариантов». А вот Надю устраивает только Петя, и если тот найдет свою Веру и любовь окажется взаимной, то Надя останется одна. В противном случае у Нади все шансы завоевать сердце своего принца.
Требуется разбить этих привередливых людей на идеально устойчивые пары. Механизм может быть любой – от свободного волеизъявления (правда, нужно понимать, что, хотя в реальной жизни идеальные совпадения и резонансы, как и чудеса, иногда случаются, но относиться к этому нужно так же, как к чуду) до жесткого диктаторского предписания, кому с кем жить. Однако даже в последнем случае мы верим, что этот диктатор просвещенный, и он хочет, чтобы после выполнения его предписаний никто (совсем никто!) не пожалел о сделанном выборе и не захотел развестись.