Читаем Занимательная электроника полностью

Оптрон АОД130Б можно заменить на любой другой диодный оптрон, однако учтите, что отечественные оптроны старых моделей имеют очень небольшое пробивное напряжение изоляции (100–200 В). Впрочем, это критично только в том случае, если регулирующая схема (переменный резистор) гальванически соединена с потенциалом, связанным с сетью, — например, закорочена на корпус, который связан с настоящей землей. Поскольку это маловероятно, то в крайнем случае можно не обращать внимания на этот параметр, но все же использовать «нормальные» оптопары как-то спокойнее. Транзисторы КТ815Г и КТ814Г, вообще говоря, можно заменить любыми соответствующими маломощными транзисторами, скажем, КТ315Г/КТ361Г или КТ3102/КТ3107, потому что мощность транзистора тут большой роли не играет. Но с более мощными схема может работать стабильнее из-за того, что у них в открытом состоянии внутренние сопротивления переходов существенно ниже. Конденсатор С1, естественно, неполярный, керамический или с органическим диэлектриком.

Для больших токов нагрузки (превосходящих 1–2 А) тиристор придется поставить на радиатор 15–30 см2. Крупным недостатком этой простой и надежной схемы является наличие моста, через который течет тот же ток, что и через нагрузку. При указанных на схеме диодах, рассчитанных каждый на ток до 3 А, и тиристоре с предельным током 10 А мощность в нагрузке может достигать 1,3 кВт (т. к. через каждый диод ток течет только в течение полупериода, то ток через него и выделяющаяся на нем мощность наполовину меньше, чем на тиристоре). Производители диодов из серии 1N54хх в описании их характеристик хвастаются, что даже при максимальном токе дополнительного теплоотвода для них не требуется. Однако если рассчитывать на максимальную мощность, и, тем более, если устройство предполагается установить в герметичном корпусе, где будет, несомненно, очень жарко, то их все же лучше поменять на такие, которые можно устанавливать на радиатор, например, из серии КД202 с буквами от К до Р (т. к. эти диоды рассчитаны на ток до 5 А, то можно выжать мощность уже 2 кВт). Естественно, можно использовать и готовый мост, скажем, импортный KBL04.

Отладку надо начинать со сборки всей схемы, исключая тиристор с мостом и резистор R7. Регулирующую цепочку R1-R2 на входе оптрона (вместо переменника R1 впаяйте пока постоянный резистор) следует подсоединить к тому источнику питания, который будет использоваться в реальном регуляторе (можно применить любой нестабилизированный источник со встроенной вилкой или только его внутренности, как указано в главе 9). Напряжение источника большого значения не имеет, оно может быть любым в диапазоне от 7 до 20 В. Питание остальной части схемы мы на период отладки обеспечиваем также от источника постоянного тока — можно от того же самого, что питает и регулирующую цепочку.

Затем постоянный резистор, заменяющий R1, перемыкаем накоротко с помощью проволочной перемычки, все включаем и смотрим осциллографом импульсы, которые должны появиться на резисторе R5. Если импульсов нет, это означает одно из двух: либо что-то неправильно собрано, либо вы их просто не видите, т. к. они достаточно короткие. Посмотрите тогда форму напряжения на конденсаторе С1 — там вы точно должны все поймать. Если конденсатор заряжается и разряжается как надо, попробуйте опять поймать импульсы, меняя длительность развертки и используя синхронизацию. После того как вы их поймаете, определите по сетке осциллографа и установкам времени развертки длительность промежутка между ними. Изменяя номинал резистора R2, это время нужно установить в пределах одной-полутора миллисекунд, меньше не надо — ранее мы уже узнали, что при малых фазовых сдвигах регулирования все равно никакого не будет (30° сдвига и соответствует примерно 1,5 мс для частоты 50 Гц). После этого снимаем перемычку с R1. При этом промежуток должен оставаться в пределах 10–11 мс. Если это не так, подберите величину резистора R1. Затем на его место следует впаять переменный резистор точно такого же номинала.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки